关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

核磁共振谱的原理简介

2022.3.10

  根据量子力学原理,与电子一样,原子核也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数I决定,原子核的自旋量子数I由如下法则确定:

  1)中子数和质子数均为偶数的原子核,自旋量子数为0;

  2)中子数加质子数为奇数的原子核,自旋量子数为半整数(如,1/2, 3/2, 5/2);

  3)中子数为奇数,质子数为奇数的原子核,自旋量子数为整数(如,1, 2, 3)。

  迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P。

  由于原子核携带电荷,当原子核自旋时,会产生一个磁矩。这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。进动频率又称Larmor频率:

  υ=γB/2π

  γ为磁旋比,B是外加磁场的强度。磁旋比γ是一个基本的核常数。可见,原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在已知强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。

  原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,自旋量子数为I的核在外加磁场中有2I+1个不同的取向,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。这些能级的能量为:

  E= -γhmB/2π

  式中,h是Planck常数(普朗克常数)(6.626x10-34);m是磁量子数,取值范围从-I到+I,即m= -I,-I+1, … I-1,I。

  当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。根据选择定则,能级的跃迁只能发生在Δm=±1之间,即在相邻的两个能级间跃迁。这种能级跃迁是获取核磁共振信号的基础。根据量子力学,跃迁所需要的能量变化:

  ΔE=γhB/2π

  为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。当外加射频场的频率与原子核自旋进动的频率相同的时候,即入射光子的频率与Larmor频率γ相符时,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。

推荐
关闭