长期以来,人们研究高能宇宙射线都是借助于探测器手段(观测切伦科夫光或荧光),为了确定宇宙射线的能量和方位,需要在高海拔地区大面积的布设探测器(如西藏的羊八井),费用高且维护困难,探索新的宇宙射线探测技术一直是科学家的愿望。早在上个世纪六十年代人们就意识到,宇宙射线进入地球时会发生大气簇射,其次级粒子的衰变会产生正负电子对,当这些电子以近乎光速运动时,由于地球磁场所导致的同步辐射将产生微弱的电磁辐射,辐射能量落在20-100MHz的低频附近,表现为该波段一个纳秒级无线电脉冲。所以,只要能够实现高时间分辨率的低频无线电观测并识别各种干扰信号,就有可能实现宇宙射线的无线电探测。这是因为所有的方法都是通过探测宇宙射线的次级效应来重建原初宇宙射线特性。

  虽然低频无线电技术已经非常成熟,但直到近些年,随着高速数字化技术(ADC)和计算机技术的迅猛发展,才使得人们有可能真正有效实现宇宙射线的无线电探测和事例重建。位于德国的LOFAR/LOPES、荷兰的LOFAR/LORA和法国的CODALEMA是近年间专门为实现宇宙射线的低频无线电探测所建立的几大实验设施,均成功验证了此技术方法的可靠性和有效性。