关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

俄歇电子能谱的基本原理

2018.7.27

1.入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子(如果电子束将某原子K层电子激发为自由电子,L层电子跃迁到K层,释放的能量又将L层的另一个电子激发为俄歇电子,这个俄歇电子就称为KLL俄歇电子。同样,LMM俄歇电子是L层电子被激发,M层电子填充到L层,释放的能量又使另一个M层电子激发所形成的俄歇电子)

2.对于原子序数为Z的原子,俄歇电子的能量可以用下面经验公式计算:

EWXY(Z)=EW(Z)-EX(Z)-EY(Z+ Δ)-Φ

EWXY(Z):原子序数为Z的原子,W空穴被X电子填充得到的俄歇电子Y的能量

EW(Z)-EX(Z):X电子填充W空穴时释放的能量

EY(Z+Δ):Y电子电离所需的能量

1532659662743543.jpeg

3.由于一次电子束能量远高于原子内层轨道的能量,可以激发出多个内层电子,会产生多种俄歇跃迁,因此,在俄歇电子能谱图上会有多组俄歇峰,虽然使定性分析变得复杂,但依靠多个俄歇峰,会使得定性分析准确度很高,可以进行除H,He之外的多元素一次定性分析。同时,还可以利用俄歇电子的强度和样品中原子浓度的线性关系,进行元素的半定量分析

4.对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析

1532659662280988.jpeg

5.虽然俄歇电子的动能主要由元素的种类和跃迁轨道决定,但由于原子内外层轨道的屏蔽效应,芯能级轨道和次外层轨道上的电子的结合能在不同的化学环境中是不一样的,这种轨道结合能上的微小差异可以导致俄歇电子能量的变化,称为俄歇化学位移,主要取决于元素所处的化学环境,一般来说,俄歇电子设计三个原子轨道能级,所以其化学位移要比XPS的化学位移大的多,利用俄歇位移可以分析元素的化学价态和存在形式

6.一般元素的化合价越正,俄歇电子的动能越低,化学位移越负;相反,化合价越负,俄歇电子动能越高,化学位移越正;对于相同化学价态的原子,俄歇位移与原子间的电负性差有关,电负性差越大,原子得失的电荷也越大,因此俄歇化学位移也越大

数据处理:俄歇谱一般具有两种形式,积分谱和微分谱:1.积分谱可以保证原来的信息量,但背景太高,难以直接处理,可直接获得 2.微分谱具有很高的信背比,容易识别,但会失去部分有用信息以及解释复杂,可通过微分电路或计算机数字微分获得


推荐
关闭