关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

直播预告|维兹曼科学研究所博士讲述分子电子学

2023.9.08

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508107.shtm

直播时间:2023年9月8日(周五)20:00-21:30

直播平台:

2023981511129603.png

科学网APP

(科学网微博直播间链接)

2023981511129602.png

科学网微博

2023981511129441.png

科学网视频号

北京时间2023年9月8日晚八点,iCANX Talks 第160期邀请到维兹曼科学研究所的 Ayelet Vilan 博士进行分享!更多精彩,敬请期待!

【嘉宾介绍】

2023981511129440.png

Ayelet Vilan

Weizmann Institute of Science

Molecular Electronics: An Electrostatic Perspective

【Abstract】

Our digital era is dominated by information coded using (mostly) current of electrons through inorganic, crystalline materials. Biology on the other hand, encodes information via electrostatic potential across molecular membranes. The magnitude of molecular electrostatic potential is unprecedented in standard inorganic electronic materials. For example, aligning a moderate molecular dipole in an array, as in self-assembled monolayer, is equivalent to a giant electric field (∼1 GV/m) that will lead of dielectric break down of most inorganic (oxides) insulators. Research on molecular electronics mainly follows the first approach, exploring the sensitivity of current to the quantized nature of molecules. I would like to suggest a complementary perspective, which is focused on elucidating and manipulating the potential profile along the current path. My talk will overview various electrostatic aspects of molecular monolayers, from modifiers of potential barrier between bulk materials, via charge-balance at organic / inorganic interface and up to deducing potential profiles from analysis of experimentally-measured current-voltage curves. These concepts could find relevance to diverse fields from renewable energy materials to bio-sensors.

我们的数字时代基本上是通过无机晶体材料中的电子流编码信息来实现的。另一方面,生物学通过分子膜上的静电势来编码信息。分子静电势的大小在标准无机电子材料中是前所未有的。例如,将中等分子偶极排列成阵列(如自组装单层)就相当于一个巨大的电场(∼1 GV/m),这将导致大多数无机(氧化物)绝缘体的介电分解。分子电子学研究主要采用第一种方法,探索电流对分子量子化性质的敏感性。我想提出一个互补的视角,即侧重于阐明和操纵电流路径上的电位曲线。我的演讲将从静电的角度来概述单分子层,从块状材料之间的电位势垒调节器,到有机/无机界面的电荷平衡,直至通过分析实验测量的电流-电压曲线推导出电位曲线。这些概念可应用于从可再生能源材料到生物传感器等多个领域。

【BIOGRAPHY】

Dr. Ayelet Vilan studies molecular electronics at the Weizmann Institute of Science, in Israel. Her Ph.D. thesis (Materials and Interfaces department at the Weizmann Institute of Science, 2002) explores dipolar monolayers at the Au/GaAs surface. After a post-doctoral study at Philips Research (Eindhoven), she returned to the Weizmann institute in 2005. She worked as a visiting scientist in Texas A&M (2013-4). Her research interests encompass self-assembled monolayers, construction of molecular junctions and chemical and physical surface characterization. She focuses on the development of empirical tools for the interpretation and the quantification of charge transport across molecular junctions, in either single molecule or monolayer configurations.

推荐
热点排行
一周推荐
关闭