关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

微带不等分功分器设计与仿真(二)

2020.9.28

四、详细设计步骤

设计原理:

传输线结构的功率分配器[如图1(a)所示,输入端口特性阻抗为Z0,两段分支微带线电长度为/4,特性阻抗特性阻抗为Z0,两段分支微带线电长度为/4,特性阻抗分别为Z02和Z03,终端分别接负载R2和R3。

首先做以下3条假设:

(1)Port1无反射
(2)Port2,3输出电压相等且同相;
(3)Port2,3输出功率比值为任意指定值1/k2。

根据上面3条可得:

20150821032756440.jpg

由传输线理论有:

20150821032903635.jpg

设R2=kZ0,则Z02,Z03,R3的计算公式为:

20150821032914498.jpg

取k=1,即得到3dB Wilkinson功分器的各参数值为:R2=R3=Z0,Z02=Z03=2Z0,为了增加隔离度在Port2,3之间添加了一个电阻R=2Z0,其结构如图1(b)

所示。通过上述分析得到3dB Wilkinson功分器的所有元件的参数值,接着就可以进行设计了。

2、Wilkinson功分器的设计

本文使用Agilent公司的ADS软件进行功分器的设计、仿真和优化获得参数性能较好的尺寸结构,通过Protel软件画出PCB图并制作实验板用于测试,最后制作的功分器结构如图2所示。

20150821032925640.jpg

图1、传输线结构的功分器

20150821032938375.jpg

图2、功分器结构

(1)、Wilkinson功分器的指标参数:

描述3dB Wilkinson功分器的关键指标有3个
(1)Port1的回波损耗:
RL1=-20log|S11|
(2)Port1和Port2之间的耦合度:
CP12=-20log|S21|
(3)Port2和Port3之间的隔离度:
IL23=-20log|S23|

由对称关系可知,端口1,3间的耦合度等于端口1,2间的耦合度。在理想情况下,中心频率处的回波损耗和隔离度应该接近负无穷大,耦合度应该尽量接近3dB。本文设计的功分器工作在0.9~1.1GHz频段,中心频率1.0GHz,采用双面敷铜的FR-4介质板,相对介电常数r=4.3,厚度h=1.5mm,要求通带内各端口反射系数小于-20dB,端口2和端口3之间的隔离度小于-20dB,端口1和端口2之间的耦合度小于3.5dB。

(2)、Wilkinson功分器的仿真与优化

根据文献[3]中传输线特性阻抗计算方法,可以得到特性阻抗为Z0=50的传输线宽度W13mm,Z02=Z03=70.7的传输线宽度W21.52mm,1/4的70.7传输线长度L41.28mm。得到上面这些初始值后就可以开始进行下一步的软件仿真,在ADS的软件环境中选取各种需要的微带线工具,根据上面获得的数据设置好各个元件的初值。将1/4的传输线长度L和他的宽度W2设置为变量,将S11,S21,S23作为优化指标,然后不断进行迭代运算和优化,最后得到W2=1.8mm,L=42.35mm,仿真得到S11,S21,S23的值分别如图3中的实线所示。

20150821032952117.jpg

图3、仿真图

(3)、测试结果

功分器各性能指标的测量采用Agilent公司的E5071B网络分析仪,测试时3个端口的其中之一接50匹配负载,S11,S21,S23的测试值与仿真值的比较如图3所示,从测试结果可见,中心频率有很小的偏移,S21产生一定误差,这是由于实验采用的双面敷铜介质板本身功率损fr-4耗较大且实际介电常数有偏差的原因。其余各指标均达到设计目标,且测试与仿真值整体上吻合较好。


推荐
关闭