为了制备金属纳米线,近物所科研人员首先利用高能重离子加速器加速的高能重离子轰击模板材料形成纳米尺度的重离子潜径迹,并对这些潜径迹进行化学蚀刻使其转变成纳米孔道,最后利用电化学沉积技术将不同金属材料填充到纳米孔道里形成纳米线。铜纳米线的研究结果表明,较低的沉积电压和较高的温度可形成单晶纳米线,而相反的条件则可获得多晶铜纳米线,通过综合控制电解液成份、沉积温度和电压等制备条件,分别可获得沿[111]、[100]或[110]方向晶体学择优取向的纳米线。对于多晶纳米线,在实验上验证了理论预测的多晶纳米铜的新奇力学性质:Anti-Hall-Petch效应。这些发现表明,重离子径迹结合电化学沉积技术是一种可控制备金属纳米线的高度灵活的方法,并可实现更多材料如金、银、铂、钴等纳米线的结构调控,进而获得所需的物理化学性质。

  本世纪初以来,近物所材料研究二组一直致力于发展基于重离子径迹的纳米材料可控制备与物理性质研究。利用重离子径迹模板结合电化学沉积技术,先后成功制备了金、银、铜、钯、钴、硫化镉、聚吡咯等金属、半导体和聚合物纳米线,并研究了其电学、磁学、光学、力学和化学性质。通过与德国GSI亥姆霍兹重离子研究中心材料组合作,首次在重离子径迹模板中可控合成了金纳米线,并利用扫描隧道显微镜发现了多晶金纳米线也具有类似于多晶纳米铜的Anti-Hall-Petch效应,发表在Nanotechnology 17(2006)1922上的研究结果得到了国际同行的认可,论文引用已达40余次。