关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

详解无线设计中的LNA和PA运行 (一)

2020.10.12

对性能、小型化和更高频率的需求,正挑战无线系统中两个关键天线连接元器件的限制:功率放大器(PA) 和低噪声放大器(LNA)。5G 的发展以及 PA 和 LNA 在微波无线电链路、VSAT(卫星通信系统)和相控阵雷达系统中的使用正促成这种转变。这些应用的要求包括较低噪声(对于 LNA)和较高能效(对于 PA)以及在高达或高于 10 GHz 的较高频率下的运行。为了满足这些日益增长的需求,LNA 和 PA 制造商正在从传统的全硅工艺转向用于 LNA 的砷化镓(GaAs) 和用于 PA 的氮化镓(GaN)。

 

本文将介绍 LNA 和 PA 的作用和要求及其主要特性,然后介绍典型的 GaAs 和 GaN 器件以及利用这些器件进行设计时的注意事项。

 

LNA 的灵敏作用

 

LNA 的作用是从天线获取极其微弱的不确定信号,这些信号通常是微伏数量级的信号或者低于 -100 dBm,然后将该信号放大至一个更有用的水平,通常约为 0.5 到 1 V(图 1)。具体来看,在 50 Ω 系统中 10 μV 为 -87 dBm,100 μV 等于 -67 dBm。

 

利用现代电子技术可以轻松实现这样的增益,但 LNA 在微弱的输入信号中加入各种噪声时,问题将远不是那么简单。LNA 的放大优势会在这样的噪声中完全消失。 

1

图 1:接收路径的低噪声放大器(LNA) 和发送路径的功率放大器(PA) 经由双工器连接到天线,双工器分开两个信号,并防止相对强大的 PA 输出使灵敏的 LNA 输入过载。(图片来源:Digi-Key Electronics)

 

注意,LNA 工作在一个充满未知的世界中。作为收发器通道的前端,LNA 必须能捕捉并放大相关带宽内功耗极低的低电压信号以及天线造成的相关随机噪声。在信号理论中,这种情况称作未知信号 / 未知噪声难题,是所有信号处理难题中最难的部分。

 

LNA 的主要参数是噪声系数(NF)、增益和线性度。噪声来自热源及其它噪声源,噪声系数的典型值为 0.5 - 1.5 dB。单级放大器的典型增益在 10 - 20 dB 之间。有一些设计采用在低增益、低 NF 级后加一个更高增益级的级联放大器,这种设计可能达到较高的 NF,不过一旦初始信号已经“增大”,这样做就变得不那么重要。(有关 LNA、噪声和射频接收器的详细内容,请参阅 TechZone 中《低噪声放大器可以最大限度地提升接收器的灵敏度》一文。)

 

LNA 的另一个问题是非线性度,因为合成谐波和互调失真可使接收到的信号质量恶化,在位误差率(BER) 相当低时使得信号解调和解码变得更加困难。通常用三阶交调点(IP3) 作为线性度的特征化参数,将三阶非线性项引起的非线性乘积与以线性方式放大的信号关联在一起;IP3 值越高,放大器性能的线性度越好。

 

功耗和能效在 LNA 中通常不属于首要问题。就本质而言,绝大多数 LNA 是功耗相当低且电流消耗在 10 - 100 mA 之间的器件,它们向下一级提供电压增益,但不会向负载输送功率。此外,系统中仅采用一个或者两个 LNA(后者常用于 Wi-Fi 和 5G 等接口的多功能天线设计中),因此通过低功耗 LNA 节能的意义不大。

 

除工作频率和带宽外,各种 LNA 相对来讲在功能上非常相似。一些 LNA 还具有增益控制功能,因此能够应对输入信号的宽动态范围,而不会出现过载、饱和。在基站至手机通道损耗范围宽的移动应用中,输入信号强度变化范围如此之宽的情况会经常遇到,即使单连接循环也是如此。

 

输入信号到 LNA 的路由以及来自其输出信号与元器件本身的规格一样重要。因此,设计人员必须使用复杂的建模和布局工具来实现 LNA 的全部潜在性能。由于布局或阻抗匹配不佳,优质元器件可能容易劣化,因此务必要使用供应商提供的史密斯圆图(参见“史密斯圆图:射频设计中依旧至关重要的一个‘古老’图形工具”),以及支持仿真和分析软件的可靠电路模型。

 

由于这些原因,几乎所有在 GHz 范围内工作的高性能 LNA 供应商均会提供评估板或经过验证的印刷电路板布局,因为测试设置的每个方面都至关重要,包括布局、连接器、接地、旁路和电源。没有这些资源,设计人员就需要浪费时间来评估元器件在其应用中的性能。

 

基于 GaAs 的 LNA 的一个代表是 HMC519LC4TR。这是一种来自 Analog Devices 的 18 到 31 GHz pHEMT(假晶高电子迁移率晶体管)器件(图 2)。这种无引线 4×4 mm 陶瓷表面贴装封装可提供 14 dB 的小信号增益,以及 3.5 dB 的低噪声系数和+ 23 dBm 的高 IP3。该器件可从单个+3 V 电源提取 75 mA 电流。 

2

图 2:HMC519LC4TR GaAs LNA 为 18 至 31 GHz 的低电平输入提供低噪声增益;大多数封装连接用于电源轨、接地或不使用。(图片来源:Analog Devices)

 

从简单的功能框图到具有不同值和类型的多个外部电容器都需要一个设计进程,提供适当的射频旁路,在三个电源轨馈电上具有低寄生效应,指定为 Vdd(图 3)。 

3

图 3:在实际应用中,HMC519LC4TR LNA 在其电源轨上需要多个额定电压相同的旁路电容器,以提供用于低频滤波的大电容以及用于射频旁路的较小值电容,从而最大程度地减少射频寄生效应。(图片来源:Analog Devices)

 

根据此增强原理图生成评估板,详细说明布局和 BOM,包括非 FR4 印刷电路板材料的使用(图 4(a) 和 4(b))。

4

图 4(a)

5

图 4(b)

 

图 4:考虑到这些 LNA 前端工作的高频率和它们必须捕获的低电平信号,一个详细且经测试的评估设计至关重要。其中包括一份原理图(未显示)、电路板布局(a) 和 BOM,及无源元器件和印刷电路板材料(b) 的细节。(图片来源:Analog Devices)


推荐
关闭