关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

Science:可编程的DNA剪刀

2012.7.01

  劳伦斯伯克利国家实验室(Berkeley Lab)的科学家发现了一种更有效的基因组编辑新方法,为基因工程和基因组研究者带来了福音。基因工程改造的微生物(如细菌和真菌)在生物能源和药物研发等方面起到了关键作用,而这一研究成果能为科学家提供极大的帮助。

  劳伦斯伯克利国家实验室的研究团队发现了一种双链RNA,能指导细菌蛋白在特定位点剪切外源DNA,而且将这种双链RNA改造为单链RNA,能指导细菌蛋白对几乎所有DNA序列进行剪切。该文章发表在Science杂志上。

  研究人员发现的这种RNA引导的双链DNA剪切是细菌获得性免疫系统的核心。细菌和古细菌面临着病毒和质粒的不断攻击,微生物为了生存采用了以 CRISPR(成簇的规律间隔的短回文重复序列)为核心的免疫系统。细菌和古细菌能够利用小crRNA分子(CRISPR-derived RNA),结合CRISPR和相关内切酶Cas蛋白(CRISPR-associated蛋白)靶标并摧毁入侵病毒和质粒的DNA。

  CRISPR/Cas 免疫系统主要有三种类型。这里研究人员研究的是完全依赖Cas9内切酶家族来靶标和剪切外源DNA的II型CRISPR/Cas免疫系统。研究发现在这一系统中,crRNA通过碱基配对与tracrRNA(trans-activating RNA)结合,形成双链RNA。这一tracrRNA:crRNA二元复合体指导Cas9蛋白在crRNA引导序列靶标的特定位点剪切双链DNA。在与 crRNA引导序列互补的位点,Cas9蛋白的HNH核酸酶结构域剪切互补链而Cas9 RuvC-like 结构域剪切非互补链。

  研究人员将这种tracrRNA:crRNA二元复合体改造为单链RNA嵌合体,也能同样指导Cas9蛋白在特定位点剪切双链DNA。tracrRNA:crRNA复合体结合Cas9蛋白,并通过crRNA与目标DNA碱基配对引导Cas9蛋白到特定DNA序列,微生物通过这一机制剪切并破坏病毒和质粒,而这一系统也可以用于对基因组中目标DNA进行改造。

  研究人员正在深入研究这一RNA引导的剪切作用的细节,并测试这一系统是否能在真菌、线虫、植物和人类细胞等真核生物中起作用。

  这一机制有望成为有效的基因组改造新工具,可编程RNA引导的基因组改造为基因组编辑开辟了新途径。

  可编程的DNA剪刀:细菌免疫系统发现的双链RNA指导Cas9在特异位点剪切入侵DNA。人为改造这一双链RNA,可以用于进行基因组编辑。

推荐
关闭