关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

放射性测量方法(二)

2020.7.20

2.探测装置

一个供探测γ光子用的固体晶体装置包括一个密闭的铊激活碘化钠晶体,安放在光电倍增管的表面上。密闭的晶体上是一块固态圆筒状的铊激活碘化钠,其顶部和四周都是用铝层包裹以避免光和湿气,因为碘化钠晶体易吸潮,为改善反射性,碘化钠晶体用一玻璃片密封,并同光电倍增管的表面直接接触,其间加些硅油以达到光学匹配,整个装置是不透光的。γ射线易于穿透晶体外表的铝层,然后被高效的晶体所吸收,晶体发射出其能量与入射γ射线能量成比例的可见光。接着,光电倍增管将可见光能量转换为电脉冲,各种能量转换过程(即从γ光子发射直到产生一个电脉冲)成比例的性质,以及γ光子的吸收性质,保证γ放射性同位素可通过晶体闪烁得以计数,并定量。晶体γ计数器通常设计成既能有效地探测光电效应,又能有效地探测康普顿效应。但探测效应随着光子能量的增大而减小,对于大多数市售γ计数器所用碘化钠晶体的尺寸来说,光电效应在低光子能量,例如在低于400keV时占主要地位,而在1MeV附近即以康普顿效应为主。在这两种能量之间,两种效应几乎以相等的频率发生,由于所用的晶体尺寸较小,难以探测到电子对的生成。另外,在塑料溶剂(如聚乙烯甲苯)中加入闪烁体(如POPOPTP),做成片状,可用来探测能量较高的β射线,如32P放出的1.71MeV的高能量β射线。最早使用的硫化锌晶体较薄,内含微量的微量的银作为激活剂,可用来探测α射线。

3.晶体闪烁计数的定性、定量分析

放射性同位素铬主要按电子俘获方式衰变,其半衰期为27.8天,由于电子俘获,原子的原子序数减少1,因而变成一种钒的同位素,按电子俘获方式衰变至基态钒发生的频率为91%,并导致随后发射-5keV的弱X射线,此X射线一般难以探测,因为从样品中出来的 X射线在其能穿入碘化钠晶体之前已被吸收掉了。51Cr9%的机会通过电子俘获衰变到钒的一种受激核态,并立刻通过发射-320keVγ射线衰变至稳定的基态,这种γ射线易于探测。用晶体闪烁计数器来观察51Cr,在320keV处观察到一个尖锐的峰,称为光电峰,这是γ光子能量以光电效应损耗的结果,但并非所有能量都以此过程损耗,所以在较低能量时光子能量由于康普顿效应损耗而出现一连串较宽不明显的峰,从光电峰下到谷的对侧称为康普顿边缘。能量低于康普顿区的扩散峰,是由于γ射线对吸收物质的反散射引起的,散射光子的能量低。各种γ射线放射性同位素都有其特征的光电峰,利用特征光电峰,可对各种γ射线放射性同位素进行定性和鉴别。对各种样品的γ射线计数测量是将测得的计数率与总放射性强度或标准源的计数率进行比较,可以算出样品放射性占总放射性或标准源的百分比,从而获得样品放射性强度。

4.仪器性能的评价

晶体闪烁计数器现在基本都做成井型或圆柱型,用碘化钠(铊)作为闪烁体,探测γ射线,所以又把探测γ射线的晶体闪烁计数器称为 γ计数器(γcounte-r)。γ计数器的性能一般是根据其对137Cs662keV光电峰的分辩能力而加以比较的,探测系统的分辩率是一光电峰展宽程度的量度,定义为最大峰高的一半处的峰宽度(用keV为单位)除以该光电峰的最大脉冲高度(用keV为单位)再乘以100。如果光电倍增管工作在最佳状态时,分辩率能达到7%。但是,通常的井形晶体计数器由于光学性质较差,其分辩率也较差,其分辩率值约为12%。γ射线能量越高,光电峰的分辩率也会有所改善。

三、液体闪烁计数(Liquifd scintillation counting

液体闪烁计数所用的闪烁体是液态,即将闪烁体溶解在适当的溶液中,配制成为闪烁液,并将待测放射性物质放在闪烁液中进行测量。应用液体闪烁计数可达到4π立体角的优越几何测量条件,而且源的自吸收也可以忽略,对于能量低,射程短、易被空气和其它物质吸收的α射线和低能β射线(如3H14C),有较高的探测效率,液体闪烁计数器是α射线和低能β射线的首选测量仪器。

1.探测机理

闪烁液产生光子的过程是,从放射源发出的射线能理,首先被溶剂分子吸收,使溶剂分子激发。这种激发能量在溶剂内传播时,即传递给闪烁体(溶质),引起闪烁体分子的激发,当闪烁体分子回到基态时就发射出光子,该光子透过透明的闪闪烁液及样品的瓶壁,被光电倍增管的光阴极接收,继而产生光电子并通过光电倍增管的倍增管的位增极放大,然后被阳极接收形成电脉冲,完成了放射能光能电能的转换。

2.闪烁液

液体闪烁计数系统作用的闪烁溶液,是指闪烁瓶中除放射性被测样品之外的其它组分,主要是有机溶剂和溶质(闪烁体),有时为了样品的制备或提高计数效率的需要,还加入其它添加剂。溶剂:从β源放射β射线到发射能被肖阴极接收的光妇的这一系列能量转移环节中,能量转移效率是很低的,只有少部分放射能量被利用来发射光子,其中放射源与溶剂之间,能量转移效率大约为510%。对溶剂的选择,主要视其对闪烁体的溶介度和将放射能转移给闪烁体的效率而定。如果以一定浓度的闪烁体在甲苯溶液中产生的脉冲高度为100%,那么,凡能产生80%以上的脉冲高度的都定为溶剂,能使脉冲高度随其浓度上升而逐渐减小的称为稀释液,而在浓度很低时就能引起脉冲高度显著下降的叫淬灭剂。在液体闪烁计数系统中,一个好的溶剂应满足下列条件:对闪烁体的溶介度高;对放射源的转移效率高;对闪烁发射的光子透明度高;在无论有无助溶剂的帮助下都可以溶介放射性样品;在计数器的工作温度下来结冰;能够形成均相的测量溶液。一般认为,烷基苯是最好的溶剂,如甲苯,二甲苯。此外,苯甲醚也是比较好的溶剂。另外,对于含水量较多的样品,采用14-二氧不作为溶剂,因为该有机化合物的极性较大,既能很好地溶介闪烁体又可溶介含水量较多的样品,能改善计数效率,缺点是价格昂贵,冰点高,久放后产生淬灭作用很强的过氧化物,必须经纯化才能使用,并应加入 0.001%的二乙基二硫代氨基甲酸钠或丁基氢氧基甲苯(BHT),以抑制纯化的二氧六环变质。溶剂在闪烁溶液中约占99%,因此,它的纯度对闪烁液的品质是很大的影响因素。溶剂中不发光的杂质、氧和水的含量多少,都关系到淬灭程度。原则上讲,溶剂应具有闪烁纯,即不含或很少含有影响闪烁计数的淬灭成分。实际证明,分析纯试剂可以不经纯化而直接使用。

⑵闪烁液:在液体闪烁计数系统中,闪烁体又称荧光体,是闪烁液的溶质,它的很多,根据其荧光特性及作用,可分为两类,即第一闪烁和第二闪烁体。

①第一闪烁体:(初级闪烁体):常用的第一闪烁体:对联三苯(TP):化学结构 它是最早使用的闪烁体之一。它的计数率高,价格比较便宜,但是,在低温或含水溶液介度不高。2,5-二苯恶唑(PPO):化学结构 它是目前普遍使用的闪烁体,能很好地溶介在常用的溶剂中,在含水的情况下也是如此,在甲苯中的溶介度达200克/升以上。它的化学性质稳定,价格也较便宜。但是,它的最大缺点是有明显的浓度淬灭(自身淬灭),即随着PPO在溶剂中的浓度升高,计数效率下降。2-苯基-5-(4-二苯基)-1,3,4恶唑(PBD):化学结构为 它是已知的最有效的闪烁体之一。比PPO能耐受浓度淬灭,但是,它的溶介度低,尤其是在低温和含水样品存在时,溶介度下降更快,而且用量比PPO多两倍,价格昂贵。2-4-t-丁基苯基)-5-4-二苯基)-1,3,4,恶二唑(丁基-PBD):化学结构为 它的溶介度比PBD高,其最大优点对化学淬灭和颜色淬灭不敏感,因此,可以获得较高的计数效率。第二闪烁体(次级闪烁体):第二闪烁体的主要功能是吸收第一闪烁体发射的光子后,再在较长的波段上重新发射出荧光来,并能增加光子的产额。在高浓度下第二闪烁体起着一部分与第一闪烁体相同的作用(即接受激发溶剂分子的的退激能量,并发出荧光),此外,它还能与淬灭因子竞争,从而减少了第一闪烁被淬灭的程度。在下列一种或一种以上的情况下,必须在闪烁液中加入第二闪烁体:a. 样品中含有直接淬灭第一闪烁体的化合物;b. 第一闪烁体浓度太高而引起强烈的自身淬灭,且发射的光谱范围与光电倍增管光阴及不匹配;c. 计数器的光电倍增管光阴极对于较长波长的光谱响应比较好;d. 测量的样品在近紫外区有明显的吸收。

推荐
关闭