关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

放射性测量方法(四)

2020.7.20

②悬浮液测量:对于在甲苯等为基础的闪烁液中溶解度极低的无机盐等样品,可采用凝胶技术成悬浮测量液。样品经初步处理后,制成相同大小的颗粒,然后在含有凝胶剂的系统中做成悬浮液。对于悬浮液测量,下列要求是必须的:固体物质要很好地粉碎,并要求是白色或无色的均匀粉状颗粒,以避免光的吸收;要求样品确实不溶于闪烁液,否则溶解的与不溶解的部分有不同的计数效率,造成计数不稳定,结果不易重复。悬浮液测量的优点是样品不溶解在溶剂中,所以样品淬灭极小。在悬浮测量中作为聚胶剂的物质有硬脂酸铝、蓖麻油的衍生物(thixin及二氧化硅的细颗粒(Cab-o-sil)。含3.54.0% Cab-o-sil的悬浮液,要以得到很高计数效率,Cab-o-sil还可以减少计数瓶壁对放射性吸附作用,一般制样时,往往先加Cab-o-sil,再加入放射性样品,使放射性更多地吸附在悬浮颗粒上而提高计数效率。悬浮液测量法除应用于固体无机盐的测定外,也可用于水溶液和组织匀浆,还可用来测量薄层层析的放射性,应用时只要将层析物粉碎,简单地与凝胶混合即可,如果待测物能部分地从层析支持物上被洗脱而溶于闪烁液,则此法不可使用。

③支持物测量:与悬浮液测量相似,凡不溶于闪烁液的样品,可将它放置在支持物上再浸入闪烁液中进行计数。支持物的种类很多,如纸条、滤纸、玻璃纤维滤纸及醋酸纤维素膜片等。支持物在计数瓶内的位置对计数有直接影响,通常都采用平放瓶底测量,且膜片不超出闪烁液面,保持支持物和测量杯的干燥,都能获得较高的计数效率和测量重复性。支持物测量除淬灭作用小外,还有一个突出的优越性,即一次测量可以党纲较多的样品。因在同一测量瓶内,随膜片叠加数目的增加(10片之内),计数率线性增加而计数效率保持不变,这对于放射性水平低的含水样品测量非常适用。\par 在上述几种支持物中,以醋酸纤维素薄膜、玻璃纤维滤纸的效果优于普通滤纸,因为普通滤纸对光子传播几乎是不透明的,所以计数效率很低。

6.液体闪烁计数中的淬灭作用

放射能量在测量瓶内的传递和转换过程越顺利,测量效率越高。但事实上,影响能量传递过程顺序进行的因素很多,它的每一环节都存在着对能量的争夺过程,使得放射能减少,甚至发生能量传递的中断,导致测量效率下降,这种现象称为液体闪烁计数的淬灭。造成淬灭的因素很多,按淬灭性质归纳起来,有下列三种类型。

⑴化学淬灭

化学淬灭的产生,是由于被放射能激发的少量溶剂分子在分子运动中,与非激发的杂质、溶剂、溶质分子碰撞而将激发能发热能形式消耗。化学淬灭的严重程度取决于淬灭物质的化学结构和浓度。化学淬灭与淬灭物浓度的关系是淬灭物质的浓度越大,淬灭作用越严重。例如,氧和水都是强淬灭剂,在常温压下,闪烁液都能溶介空气中的氧,当氧的溶解量达到2×10-3M时,淬灭作用比无氧情况下大20%,而且闪烁液中的含水量(来自含水样品和溶剂中的少量水分以及其它的添加剂)在可能的条件下,应越少越好,闪烁液不能放在冰箱中。

⑵颜色淬灭

由于颜色对光量子的吸收作用,使得带颜色的闪烁液削弱了光子的亮度,也缩短了光量子的自由程,导致到达光阴极的光子数减少,造成计数效率下降。不同的颜色,淬灭作用程度不同,闪烁液荧光波长接近于紫外光,所以,颜色淬灭程度的顺序为:兰色〉黄色〉红色。一些生物样品,如血、尿等在制样过程中,要进行脱色处理,如果支持物测量中,滤膜干燥时被烤黄,也会造成计数效率的严重下降。

⑶光子淬灭(又称局部淬灭)

在非均相测量中,由于样品本身的自吸收而使β射线能量在没有传递给溶剂分子之前就消耗掉了,这种淬灭在均相测定中,因样品处理不好,也会发生,谓之光子淬灭。前已述及,不同能量的放射性核素,在液体闪烁计数时,闪烁体给出的光子数不同,产生的电脉冲高度亦不同。如果由接近平均能量的14C1β粒子产生400个光子,在一个符合型液体闪烁器中,每个光电倍管将接收200个光子,又因为光电倍增管的最子效率大约是25%,因此200个光子打到光阴极上产生大约50个光子,而淬灭作用使得到达光阴极光子数减少,这种减少只要能让每次衰变记录下来,否则就被计数器漏记,因此,将这些考虑应用到能量较低的3H时,如果按平均能量(0.018MeV)计算,3Hβ粒子在甲苯闪烁液中,大约产生40个光子,按25%的量子效率计算,则每个光电倍增管光阴极大约产生5个光子,与14C相比,光电子产额为1:10,所以,在3H测定中,中等程度的淬灭就会产生不能挽回的计数损失。

四、放射测量的注意事项

在放射测量过程中,以下几个问题不应忽视:

1.任何测量放射性的计数方法都存在本底问题。所谓本底指被测样品之外的信号输出。因此,在测量到的样品计数率中,要扣除本底计数率,才能获得样品的净计数率,仪器本底越低,测量灵敏度越高,准确度也越高,这在3H标记物的低水平测量中尤为重要。

2.在放射性测量工作中,通常存在着三种误差:系统误差;由于测量仪器本身或测量方法和程度的不合理以及周围环境的影响因素,使测量结果单向偏离而造成的误差。系统误差产生的原因可以找到并能加以克服;过失误差,由于实验工作者的主观错误造成,是一种无规律可循的误差,但过失误差也是可以避免的;统计误差,由于放射性衰变本身的随机性而导致的无法控制的误差,它是放射性测量误差中主要的、固有的来源。对于放射性测量统计误差,在实际工作中,常通过提高计数效率,增加测量次数(以35次为宜)或每个样品做12个平行管计数、合理分配测量时间等方法,以获得最小的测量误差。

3.在液体闪烁计数测量中,样品中含有的水份、混入的杂质或带有的等许多因素,都会使得放射能减少,甚至发生能量传递的中断,而导致计数效率下降,即淬灭。在样品制备过程中,应避免引起淬灭的因素,如果欲知榈的真正放射量,并进行样品间的相互比较,就需作淬灭校正,将cpm值换算成dpm值。常用的淬灭校正方法有稀释法、内标准法、道比法、外标准道比法等等。但是最为关键是在样品和测量过程中,尽可能地将淬灭因素减低到最小的程度.
常用同位素理化性质,检测方法

单位换算
Curies
d . p . m 的换算.
1 Curie (Ci) =2.22×1012 d . p . m .
1 milliCurie (mCi) =2.22×109 d . p . m .
1 microCurie (m Ci) =2.22×106 d . p . m .
1 nanoCurie (nCi) = 2.22×103 d . p . m .
1 picoCurie (pCi) =2.22 d . p . m .

Curies Becquerels的换算
1 Ci = 3.7×1010 Bq =37GBq (gigaBq)
1 mCi = 3.7×10 7 Bq =37MBq (megaBq)
1 m Ci = 3.7×10 4 Bq =37kBq (kiloBq)
1 GBq =2.7×10 -4 Ci =27.027mCi(milliCi)
1 MBq =2.7×10 -7 Ci =
27.027m Ci(nanoCi)
1 kBq =2.7
×10-10 Ci =27.027nCi (nanoCi)


推荐
关闭