关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

Lightigo LIBS元素分析技术在植物金属元素分布快...(一)

2020.4.20

Lightigo LIBS元素分析技术在植物金属元素分布快速Mapping中的应用

Lightigo是欧洲工程技术中心(CEITEC)的唯一衍生公司,公司成员均为布尔诺大学激光光谱与化学分析实验室的科研人员。实验室起始于1997年,在LIBS应用技术研发领域具有近20年的深厚经验,其研制生产的Sci-Trace LIBS元素分析系统获得捷克国家2016年年度最佳合作奖冠军。而在此之前,Lightigo团队曾在欧洲LIBS元素分析大赛中斩获第一名的优异成绩!

使用Sci-Trace,便意味着得到了全球顶尖的专业团队技术支持和实验室合作。

LIBS技术相较于其它元素分析方法,有其独特和不可替代的优势

较XRF技术无法检测轻元素的遗憾而言,LIBS可以检测所有元素;

较ICP-MS等传统方法,样品无须预处理, 固、液、气态样品都可直接检测,实时分析;

测量速度可达1秒钟20次,单次测量即可同时定性、半定量检测元素周期表中所有元素;

不同的营养及矿物质含量,极大的影响植物的生长和代谢对于环境的响应。元素测量一直采用ICP-OES或者AAS的传统方法,缺点是样品预处理复杂,容易引入新的杂质并造成测量误差。但最关键的是,无法得到元素分布的空间信息。而如若分布模式不同,即使含量相近,对植物生理状态的影响也差异巨大。而LIBS技术可以在植物活体状态下无须预处理进行元素mapping扫描快速分析,恰恰弥补了这一缺憾。LA-ICP-MS技术同也可进行元素分布扫描,但仍存很多问题有待克服:激光烧蚀样品经载气运送至ICP,会在运送管中有颗粒物残留; ICP中大颗粒气化不完全;记忆效应(前次测量对下次测量结果的影响);雾化室及运送管中的死角对信号强度和持续时间的影响;必须在同一位置多次测量才能获得足够强的信号等等。因此对于植物中元素分布的测量,LIBS被认为是最优也是最有前景的测量技术。  

Lightigo研究团队很早就关注到LIBS技术在植物科学领域的应用。2006年,Jozef Kaiser博士(Lightigo CEO、布尔诺科技大学光谱技术实验室主任)等即在European Physical Journal上发表了“Femtosecond laser spectrochemical analysis of plant samples”,应用libs技术对山茱萸整个叶片中的Fe、Mn元素进行分布mapping研究。当时在该实验中,Fe的LOD(检测限)已经做到5ppm。

Lightigo团队应用LIBS技术在植物元素分析领域一直在孜孜不倦的探索,优化算法、开发软件、优化仪器-----例如用真空反应室、双激发技术等提高mapping分辨率,开发AtomAnalyzer光谱数据分析软件将计算速度提高10倍,研制紫外真空模块检测0-300nm紫外光区域谱线等。测试对象既有活体植物,也有干枯样品;包括植物根、茎、叶等植物各部分组织;植物种类包括旱生植物,也包括高水分含量的水生植物;定性定量测量的元素涉及对植物有重要影响的Al、Ca、C、Mg、P、Si、Sr、Zn、B、Cu、Fe、Mn、Pb、K、S、Na、Cl、H、N、Ni、Ba、Ag等等。并发表植物LIBS分析领域高影响因子文章如下:

  • Pavlína M, Karel N, Pavel P, Jakub K, Přemysl L, Helena Z. G, Kaiser J, Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. [J], Ecotoxicology and Environmental Safety, 147 (2018) 334–341.

  • Krajcarová L, Novotný K, Kummerová M, J. Dubová J, Gloser V, Kaiser J. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS) [J], Talanta 173 (2017) 28–35.

  • Lucie K, Novotny K, Petr B, Ivo P, Petra K, Vojtech A, Madhavi Z. Rene K, Kaiser J, Copper Transport and Accumulation in Spruce Stems Revealed by Laser-Induced Breakdown Spectroscopy, [J]. Electrochemical Science, 8 (2013) 4485 – 4504.

  • Zitka O, Krystofova O, Hynek D, et al. Metal Transporters in Plants [M]. Heavy Metal Stress in Plants. 2013: 19-41.

  • Kaiser J, Novotny K, Martin M Z, et al. Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications [J]. Surface Science Reports, 2012, 67 (11–12): 233-243.

  • Michaela G, Jozef K, Karel N, et al. Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum I. leaves [J]. Microscopy Research and Technique, 2011, 74 (9): 845-852.

  • Diopan V, Shestivska V, Zitka O, et al. Determination of Plant Thiols by Liquid Chromatography Coupled with Coulometric and Amperometric Detection in Lettuce Treated by Lead (II) Ions [J]. Electroanalysis, 2010, 22 (11): 1248-1259.

  • Kaiser J, Galiova M, Novotny K, et al. Utilization of the Laser Induced Plasma Spectroscopy for monitoring of the metal accumulation in plant tissues with high spatial resolution [J]. Networking IEEE/ACM Transactions on, 2010, 20 (4): 1096-1111.

  • Kaiser J, Galiova M, Novotny K, et al. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64 (1): 67-73.

  • Krystofova O, Shestivska V, Galiova M, et al. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions [J]. Sensors, 2009, 9 (7): 5040-5058.

  • Kaiser J, Galiova M, Novotny K, et al. Mapping of the heavy-metal pollutants in plant tissues by Laser-Induced Breakdown Spectroscopy [C] Spectrochimica Acta Part B 64 (2009) 67–73.

  • Galiova M, Kaiser J, Novotny K, et al. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry [J]. Applied Physics A, 2008, 93 (4): 917-922.

  • Sona K, Pavel R, Olga K, et al. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions – plants as bioindicators of environmental pollution [J]. Sensors, 2008, 8 (1): 445-463.

  • Stejskal K, Mendelova Z, et al., Study of effects of lead ions on sugar beet [J]. Listy Cukrovarnicke A Reparske, 2008, 124 (4): 116-119.

  • Galiova M, Kaiser J, Novotny K, et al. Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2007, 62 (12): 1597-1605.

  • Kaiser J, Samek O, Reale L, et al. Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy [J]. Microscopy Research and Technique, 2007, 70 (70): 147-153.

Lightigo团队应用LIBS技术进行植物中金属元素分布的研究案例

研究案例一

浮萍(Lemna minor L.)是金属元素环境污染的指示物种,也是常被用于金属毒害和富集作用研究的模式生物。本案例中,AtomTrace团队应用LIBS技术对浮萍做元素分布mapping,比较研究Cd盐和QDs中的Cd元素在浮萍中的富集模式;并应用传统ICP-OES技术对不同含Cd化合物在浮萍中的含量和富集进行测量;同时应用TEM方法探究QDs的富集位置---浮萍表面、细胞内部、还是植物组织内。

注:Cd离子在2015年275种重要有害物质清单中排名第7。含Cd量子点(QDs)通常由直径3-6 nm 的CdS、CdSe、PbSe及CdTe和其它一些金属元素构成,其外覆有有机聚合物。由于其染料效果优于其它生物染料所以大量排放至水域中并在水中释放出Cd离子,所以研究Cd量子点对生物的毒害作用有重要的应用意义。

使用双激发LIBS技术研究Cd元素在浮萍小叶中的分布情况

实验方法:

浮萍叶片分别在含镉化合物CdCl2、MPA-QDs 及 GSH-QDs 溶液(该三种溶液浓度皆分别设为三个梯度:0.1、 1和 10 mg/L)中处理。将小叶贴于载玻片上制作样品; 

LIBS测量采用正交双激发。一次激发激光波长266nm,脉冲能量10mJ;二次激发激光波长1064nm,脉冲能量1064mJ;两次激发激光脉冲长度均为5nm。每次测量均将叶片击穿。


推荐
关闭