关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

p53基因的临床应用(二)

2021.5.24

简介
    P53蛋白主要分布于细胞核浆,能与DNA特异结合,其活性受磷酸化、乙酰化、甲级化、泛素化等翻译后修饰调控。正常\P53的生物功能好似“基因组卫士(guardian of the genome)”,在G1期检查DNA损伤点,监视基因组的完整性。如有损伤,P53蛋白阻止DNA复制,以提供足够的时间使损伤DNA修复;如果修复失败,P53蛋白则引发细胞凋亡;如果p53基因的两个拷贝都发生了突变,对细胞的增殖失去控制,导致细胞癌变。
  P53基因是迄今发现与人类肿瘤相关性最高的基因,在短短的十多年里,人们对 P53基因的认识经历了癌蛋白抗原,癌基因到抑癌基因的三个认识转变,现已认识 到,引起肿瘤形成或细胞转化的P53蛋白是P53基因突变的产物,是一种肿瘤促进因 子,它可以消除正常P53的功能,而野生型P53基因是一种抑癌基因,它的失活对肿瘤形成起重要作用。P53蛋白还分布于线粒体、核仁等结构,并且与细胞骨架有相互作用关系。

P53基因结构及表达
    P53基因在人类、猴、鸡和鼠等动物中相继发现后,对其进行了基因定位,人类 P53基因定位于17P13.1,鼠P53定位于11号染色体,并在14号染色体上发现无功能的 假基因,进化程度迥异的动物中,P53有异常相似的基因结构,约20Kb长,都由11个 外显子和10个内含子组成,第1个外显子不编码,外显子2、4、5、7、8、分别编码5个进化上高度保守的结构域,P53基因5个高度保守区即第13~19、117~142、171~192、236~258、270~286编码区。P53基因转录成2.5KbmRNA,编码393个氨基酸蛋白,分子量为53KD,P53基因的表达至少受转录及转录后两种水平的调控。在停泊生长或非转化细胞中P53mRNA水平很低,但刺激胞液后mRNA显著增加。持续生长的细胞,其mRNA水平不随细胞周期而出现明显变化,但经诱导分化后mRNA水平降低,部分是转录后调控。P53基因的转录由P1、P2两个启动子控制.P1启动子位于第一外显子上游100~250bp,P2位于第一内含子内,在启动子中包含1个NF1蛋白结合位点和一个转录因子AP1相关蛋白的结合位点,对正常P53基因的转录,不仅需要两个启动子的平衡作用,而且P53基因内含子也起作用,如内含子中有正调控作用,其调控有组织特异性。

P53基因产物
    P53蛋白N一端为酸性区1~80位氨基酸残基,C-端为碱性区319~393位氨基酸残基,正常的P53蛋白在细胞中易水解,半衰期为20分钟,突变性P53蛋白半衰期为1.4~ 7小时不等,P53蛋白N端有一个与转录因子相似的酸性结构域,与GAL4的DNA结合区重组时,融合蛋白能激活GAL4操纵子转录,激活功能定位在P53第20~40位密码子,P53 细胞定位及反式激活功能提示,P53蛋白可能直接或通过与其他蛋白作用参与转录控制。 

P53基因的功能
1、阻滞细胞周期
    在细胞周期中,P53的调节功能主要体现在G1和G2/M期校正点的监测,与转录激活作用密切相关。P53下游基因P21编码蛋白是一个依赖Cyclin(细胞周期蛋白)的蛋白激酶抑制剂,一方面P21可与一系列Cyclin-cdk (细胞周期蛋白依赖性激酶)复合物结合,抑制相应的蛋白激酶活性,导致高磷酸化Rb 蛋白(视网膜母细胞瘤蛋白)堆积,后者使E2F转录因子(参与细胞周期调控的细胞因子)不能活化,引起G1期阻滞;另外P53的另外3个下游基因Cyclin B1,CADD45 和14-3-3σ 则参与G2/M期阻滞。
2、促进细胞调亡
    Bcl-2(调控线粒体外膜通透性的基因家族)可阻止凋亡形成因子如细胞色素C等从线粒体释放出来,具有抗凋亡作用,而Bax(促凋亡基因)可与线粒体上的电压依赖性离子通道相互作用,介导细胞色素c的释放,具有凋亡作用,p53可以上调Bax的表达水平,以及下调Bcl-2的表达共同完成促进细胞凋亡作用。P53还可通过死亡信号受体蛋白途径诱导凋亡,TNF受体(在真核细胞表达具有生物活性的可溶性肿瘤坏死因子)和Fas蛋白(一种细胞膜抗原,主要功能是介导细胞凋亡)。
3、维持基因组稳定
    DNA受损后,由于错配修复的累积,导致基因组不稳定,遗传信息发生改变。P53可参与DNA的修复过程,其DNA结合结构域本身具有核酸内切酶的活性,可切除错配核苷酸,结合并调节核苷酸内切修复因子XPB和XPD的活性,影响其DNA重组和修复功能。
4、抑制肿瘤血管生成
    肿瘤生长到一定程度后,可以通过自分泌途径形成促血管生成因子,刺激营养血管在瘤体实质内增生。P53蛋白能刺激抑制血管生成基因Smad4等表达,抑制肿瘤血管形成。在肿瘤进展阶段,P53基因突变导致新生血管生成,有利于肿瘤的快速生长,这常常是肿瘤进入晚期的表现。
    p53既可阻滞细胞周期,也可诱导细胞凋亡。两种作用方式都是为了维护基因组的稳定,但二者的性质截然不同。前者是为DNA的修复或某种应激状态的改善创造时机。即便不能完全修复DNA的损伤,只要还能容忍,细胞依旧可以存活,但可能会留下基因组不稳定的后患;后者则是从根本上去除造成基因组不稳定的因素,以绝后患。显然,p53的这两种作用方式不能同时并存,二者之间有选择。究竟p53在被激活后选择何种作用方式,要由活性p53的数量与应激细胞的损伤程度两方面来决定。当通过暂时转染方式让p53在肿瘤细胞内高水平表达时,即可诱导凋亡;而采用温度敏感突变或可诱导系统让p53低水平表达时,则只能导致细胞周期阻滞。但从根本上讲,应激细胞的DNA损伤程度等因素才是决定p53选择何种作用方式的关键。

P53基因信号通路
    抑瘤制基因p53具有序列特异性,直接作用于不同细胞好病毒的蛋白质,在DNA损害时,可诱导细胞周期阻滞。面对不同基因毒性产生的信号(例如,紫外线照射或DNA损伤)时,p53被翻译产生p53蛋白,并经历翻译后修饰,从而其在细胞核中逐渐积累。p53基因对维持基因的稳定性有十分重要的作用。它可以通过永久地抑制细胞或细胞凋亡来消灭已经损伤的细胞。例如,gamma射线激活p53,开启p21 CIP1基因(癌基因)的转录,同时,结合并抑制细胞周期蛋白依赖性激酶,导致视网膜母细胞瘤低度磷酸化,从而阻断E2F的释放,同时阻滞G1期向S期的过渡。P53的某些细胞效应能够通过c-Myc, Bcl-2, 或者 E2F的自由表达被阻止。P53的活性由Mdm2参与自动调控环路所控制。Mdm2(一种癌基因,而且mdm2突变与P53突变不共存,mdm2扩增与肿瘤转移密切相关)和P53结合是为了使P53降解以及抑制p53基因诱导的细胞周期阻滞和凋亡。
    p53可以整合多重压力信号和调整细胞反应。DNA受损,p53就会使细胞停留在G期,在被损伤的DNA得到修复后,则可使细胞进入M期,细胞可继续增殖和分化;如果损伤得不到修复,则诱导细胞凋亡,借此来调节整个机体,使之处于相对自稳态。
    例如,氧化应激下,尤其是当细胞DNA受到损伤时,p53基因表达上调,表现为mRNA的翻译速度加快和翻译后修饰,但主要是表现为翻译后水平的调控,如磷酸化、乙酰化、泛素化、SUMO 化、NEDD化以及糖基化和核糖基化等构成一个复杂的调控体系,并精细地调节,引起p53蛋白的构象、定位和与其相互作用的蛋白质的改变,从而使其稳定性及活性均被提高,半衰期延长,累积量增加,功能增强,产生特异性的作用,最终影响一系列下游靶基因的表达,发挥其细胞周期的调控、DNA修复、血管形成抑制、转移抑制、细胞衰老及凋亡等功能。p53极为丰富的翻译后修饰及其与多种蛋白质间的相互作用是使p53呈现功能多样性的机制。
    p53基因受多种信号因子的调控。例如:当细胞中的DNA损伤或细胞增殖异常时,p53基因被激活,导致细胞周期停滞并启动DNA修复机制,使损伤的DNA得以修复。然而,当DNA损伤过度而无法被修复时,作为转录因子的p53还可进一步激活下游促凋亡基因的转录,诱导细胞凋亡并杀死有DNA损伤的细胞。不然,这些DNA损伤的细胞就可能逐渐脱离正常的调控,有可能最终形成肿瘤。
    虽然正常状态下p53的mRNA水平很高,而且有大量蛋白质合成,但p53蛋白容易降解,所以正常细胞内p53蛋白水平很低。蛋白的泛素化(ubiquitination)修饰是细胞内蛋白代谢过程中的最普通的降解方式,p53蛋白的降解也是通过泛素化来实现的。MDM2是一种特异性针对p53的泛素化E3连接酶,它可直接与p53蛋白结合来促进p53蛋白的泛素化降解,并在细胞内p53蛋白动态平衡中发挥关键的作用。MDM2本身也可被p53蛋白激活,因此MDM2是p53通路中重要的负反馈调节因子(negative feedback regulator)。
    早在十年前,研究人员就已经发现一种CDK抑制因子p21可以介导p53诱导的细胞生长停滞。然而,研究发现阻断小鼠体内p21的传导途径并不能完全中断p53的信号传导。这一结果提示我们,在p53途径中还存在着其它参与者,但之后十余年一直没有发现。另一个可能是人们一直将目光聚集于蛋白质编码基因上,而忽略了那些非编码RNA与蛋白质编码基因在p53信号通路中存在相互作用的可能性。在p53通路中将miRNA进行置换的研究也可以帮我们解开这个谜团。一项p53反应性转录机制的研究解释了一大批在p53被激活后即迅速被抑制的基因。如今看来,上述研究结果至少有一部分可以被看作是抑制性小RNA被诱导产生的次级效应。
    miR-34是p53的直接转录靶标,它可以下调细胞增殖和生存所需的基因表达。miR-34家族的miRNA可以和p53的其它靶标,如p21和BAX一起,在可促使恶性肿瘤发生的应激条件下促进细胞生长停滞和死亡的发生。ATM:毛细血管扩张型共济失调型突变;ATR:毛细血管控制性共济失调及RAD3相关性突变;CDK:细胞周期素蛋白依赖激酶;CHK:细胞周期检测点激酶。
    这些miRNA可以是p53的下游效应分子,也可能作为p53的调节子或修饰基因。
    p53另外一个主要的靶基因是Mdm2,编码泛素连接酶,Mdm2可以结合053蛋白的N.末端引起p53失活、出核转运、降解。

P53的失活机理
    P53蛋白与其它蛋白的相互作用,P53基因突变,都可以导致正常生物功能的丧失。   
1. P53与蛋白质的相互作用

    一些蛋白质能与P53蛋白作用,导致其正常生物学功能的丧失,DNA肿瘤病毒如 HPV16、18、SV40和腺病毒编码癌蛋白,引起宿主细胞的恶性病变,这些癌蛋白如 SV40T抗原、腺病毒ELa、ELb、HPVE6能与Rb,P53结合。Scheffner证实,
HPVE6结合P53后,启动细胞内蛋白酶降解P53,从而降低P53正常功能。而SV40T,腺病毒ELb没有发现这种降解作用方式。此外,P53还可以被细胞基因产物相互作用而失活,如MDM2可 结合P53而使其失活,在一些常见的人类肉瘤中,都有MDM2基因扩增,这种扩增可能干扰P53的正常功能。 
2. P53基因突变

    P53正常功能的丧失,最主要的方式是基因突变,通过肿瘤中大量的突变体分析,证实大部分突变是位于4个突变热点之一的错义突变。这4个突变热点是aa129~146、171~179、234~260、270~287;正对应于P53基因进化最保守区段,体外实验证实突变体失去特异位点的结合能力,此外,突变体还可以改变P53的球形构象。例如,一些 突变体可与热体克蛋白结合,一些突变引起213~217肽段的暴露,另外,一些则引起酸性激活结构域的改变,这些突变提示P53的微小改变可引起远离突变位点区段甚至整个蛋白构象的改变。构象的改变不仅影响突变体,还影响野生型的功能.实验证明,野生型突变体组成的四聚体不能与结合位点结合,也丧失对目的基因的方式激活作用,突变体对野生型的结合失活。可以解释内源野生型P53的负调控作用的解除,从而引起细胞恶性病变,随着研究的深入,对P53突变有了新的认识,Dan等认为肿瘤中P53突变可分为三类:① 零突变:即突变体无功能,不参与相互作用:② 负突变:即失去负调控功能,并能使野生型失活,但并不直接参与致癌:③正突变:失去负调控功能,并获得转化能力,这种突变体可直细胞恶性转化中代替癌基因起启动作用。
  
    目前认为,P53失活机理是,野生型P53以四聚体形式与特异位点结合,反式激活下游生长抑制基因的表达,一系列的方式能使P53失活,在一些肿瘤中,单一或两个P53位点的丧失降低四聚体浓度,无义突变造成P53翻译中断,C端酸性结构域的丢失 影响四聚体形成;最常见的是错义突变,野生型与突变体形成更稳定的四聚体,丧失正常功能。

P53突变与肿瘤  
    P53基因与人类50%的肿瘤有关,目前发现的有肝癌、乳腺癌、膀胱癌、胃癌、结肠癌、前列腺癌、软组织肉瘤、卵巢癌、脑瘤、淋巴细胞肿瘤、食道癌、肺癌、成骨肉瘤等,人类肿瘤中P53突变主要在高度保守区内,以175、248、249、273、282位点突变最高,不同种类肿瘤不同,如结肠癌和乳腺癌有相似的流行病学(包括地区分布和危险因素),但P53突变谱并不一致。结肠癌G:CA:T转换占79%,而且多数CpG,二核苷酸位点,50%以上转换突变发生在第3~5结构域的CpGC位于码子175、248、273);在乳腺癌中,只发现13%的转换在CpG位点。此外,G-T颠换在乳腺癌占1/4,但在结肠癌T分罕见.淋巴瘤和白血病的P53,突变方式与结肠癌相似,即大部分突变为CPG位点的转换,G→T颠换较低,A:T→G:C在A:T位点突变较高。佰基特淋巴瘤与其它B细胞淋巴瘤和T淋巴细胞恶性病变的P53突变谱相似,但佰基特淋巴瘤的转换突变较高。在非小细胞肺癌中G:C→T:A最普遍,食道癌颠换率很高,与肺癌不同的是,G:C和A:T位点有相似的突变率.我国启东地区50%为249癌码子的G→C、G→T颠换,而南非肝癌80%为G→T颠换。骨肉瘤中P53突变率为75%,主要集中在5~9外显子。

p53基因治疗
    基因治疗是指以改变人类遗传物质为基础的生物医学治疗。是通过一定方式将人的正常基因或有治疗作用的DNA顺序导入人体靶细胞,去纠正基因的缺陷或者发挥治疗作用。因此基因治疗针对的是疾病的根源—异常的基因本身。\
  
    癌症是一种基因病,是人体细胞在外环境因素作用下,内在多种前癌基因被激活和抑癌基因失活的多阶段长期演变的过程。癌症是严重威胁人类健康和生命的杀手,我国每年新发癌症患者250万以上,每年在治患者不下600万,治疗费用超过1500亿元。目前肿瘤的主要治疗手段是手术、放疗和化疗,尽管医学家们不断完善这3大治疗手段,但许多癌症患者仍然难以得到治愈。人们越来越关注通过“治本”的方法来提高肿瘤治愈率,基因治疗是21世纪人类攻克肿瘤的必由之路。
  
    p53基因是研究最透彻,功能最强大的一种抑癌基因。野生型p53对细胞周期和凋亡起关键性作用,尤其是对受照射、细胞毒制剂、热疗打击的癌细胞,起更大的杀伤作用。其主要作用为:抑制并杀灭肿瘤细胞;与放、化疗手段协同,增强其杀灭癌细胞的功效,达到1+1大于2的效果;抑制肿瘤血管生成,有效防止肿瘤的复发、转移。提高人体自身的免疫功能;国产的重组人p53腺病毒注射液(商品名今又生),经过5年艰苦的临床试验,由北京肿瘤医院张珊文教授带领放疗科医护人员,在Ⅰ期临床安全性试验完成的基础上,又顺利完成了头颈鳞癌的Ⅱ期临床试验,充分证实对治疗头颈鳞癌是安全有效的。2003年10月16日,国家食品药品监督管理局批准重组人p53腺病毒注射液新药证书,意味着世界上第一个癌症基因治疗药物在中国诞生,标志着我国基因治疗癌症临床和基因药物产业化方面都走在世界前列。  
 
    重组人p53腺病毒是一种基因工程改造过的活病毒,在结构上由两部分组成:一是抑癌基因p53,二是载体。载体是改造过的无复制能力的腺病毒。就像火箭携带卫星上太空一样,这种携带p53的腺病毒特异感染肿瘤细胞,它能有效地将治病的p53基因转入肿瘤细胞内,而对正常细胞无害。  
 
    今又生结合放疗治疗53例头颈鳞癌,肿瘤完全消失率比单纯放疗的46例提高2倍。结合放疗治疗45例鼻咽癌,肿瘤完全消失率比单纯放疗的41例提高1.7倍。结合放疗治疗了4例不能手术的Ⅲ期子宫颈癌都达到肿瘤完全消失。结合放疗、化疗或热疗治疗各种软组织肉瘤、消化系统腺癌、卵巢癌都取得一定的疗效,而这些病例都是经3大手段治疗失败的病人。使用今又生治疗恶性肿瘤,除出现暂时性自限性发烧外,未发现其他毒副反应。今后,全面的临床试验将在其他三级甲等医院有序展开,p53基因治疗已从实验室走向临床,走向产业化。   
    p53基因治疗肿瘤只是开了一个好头,为人类征服癌症带来了新的希望和曙光。


推荐
关闭