关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

第二代测序原理的详细解析!

2021.6.10

  2005年,罗氏推出了第一款二代测序仪罗氏454,生命科学开始进入高通量测序时代。后续随着Illumina系列测序平台的推出,极大降低了二代测序的价格,推动了高通量测序在生命科学各个研究领域的普及。目前,高通量测序已经成为一种常规研究方法,大量科研工作中均会用到。然而,为什么二代测序能实现高通量?为什么二代测序读长如此之短?为什么reads末端测序质量会降低?应该如何选择测序读长与打断片段的长度?想要回答这些问题,都需要详细了解二代测序的基本原理。本篇文章以典型的Illumina双末端测序为例,详细解析二代测序的原理。

  第二代测序(Next-generation sequencing,NGS)又称为高通量测序(High-throughput sequencing),是基于PCR和基因芯片发展而来的DNA测序技术。我们都知道一代测序为合成终止测序,而二代测序开创性的引入了可逆终止末端,从而实现边合成边测序(Sequencing by Synthesis)。二代测序在DNA复制过程中通过捕捉新添加的碱基所携带的特殊标记(一般为荧光分子标记)来确定DNA的序列,现有的技术平台主要包括Roche的454 FLX、Illumina的Miseq/Hiseq等。由于在二代测序中,单个DNA分子必须扩增成由相同DNA组成的基因簇,然后进行同步复制,来增强荧光信号强度从而读出DNA序列;而随着读长增长,基因簇复制的协同性降低,导致碱基测序质量下降,这严格限制了二代测序的读长(不超过500bp),因此,二代测序具有通量高、读长短的特点。二代测序适合扩增子测序(例如16S、18S、ITS的可变区),而基因组、宏基因组DNA则需要使用鸟枪法(Shotgun method)打断成小片段,测序完毕后再使用生物信息学方法进行拼接。

推荐
关闭