ASTM D6035/D6035M-13
采用柔性壁渗透计测定压实或完整土壤样品液体导电性冻融效应的标准试验方法

Standard Test Method for Determining the Effect of Freeze-Thaw on Hydraulic Conductivity of Compacted or Intact Soil Specimens Using a Flexible Wall Permeameter


ASTM D6035/D6035M-13 发布历史

ASTM D6035/D6035M-13由美国材料与试验协会 US-ASTM 发布于 2013。

ASTM D6035/D6035M-13 在中国标准分类中归属于: P22 地基、基础工程。

ASTM D6035/D6035M-13 发布之时,引用了标准

  • ASTM D1587 土工技术用土壤薄壁管抽样的标准实施规程
  • ASTM D2113 现场勘测用岩芯钻探和取样的标准操作规程
  • ASTM D2216 实验室测定土壤和岩石中水(湿气)含量的试验方法
  • ASTM D3740 工程设计及建筑中使用的土壤和岩石的试验和或检查中使用试剂评定的规程
  • ASTM D4220 保存和运输土壤样品的标准实施规程
  • ASTM D5084 使用柔性壁渗透仪测量饱和多孔材料的液压电导率的标准测试方法
  • ASTM D6026 在土工学数据中使用明显数字的标准实施规程
  • ASTM D653 采用流动空气测量未饱和多孔材料渗透性的标准试验方法

ASTM D6035/D6035M-13的历代版本如下:

  • 2019年 ASTM D6035/D6035M-19 用柔性壁渗透仪测定冻融对压实或完整土壤试样导水率影响的标准试验方法
  • 2013年 ASTM D6035/D6035M-13 采用柔性壁渗透计测定压实或完整土壤样品液体导电性冻融效应的标准试验方法
  • 2008年 ASTM D6035-08 用于确定冷冻解冻对压实或完整土壤样品的液压电导率的影响的标准测试方法
  • 2002年 ASTM D6035-02 用柔性壁渗透仪测定冻融对压实土或原状土试样的导水率影响的标准试验方法
  • 1996年 ASTM D6035-96 用柔性壁渗透仪测定冻融对压实土或原状土试样的导水率影响的标准试验方法

 

4.1 This test method identifies the changes in hydraulic conductivity as a result of freeze-thaw on natural soils only.

4.2 It is the user''s responsibility when using this test method to determine the appropriate water content of the laboratory-compacted specimens (that is, dry, wet, or at optimum water content) (Note 2).

Note 2—It is common practice to construct clay liners and covers at optimum or greater than optimum water content. Specimens compacted dry of optimum water content typically do not contain larger pore sizes as a result of freeze-thaw because the effects of freeze-thaw are minimized by the lack of water in the sample. Therefore, the effect of freeze-thaw on the hydraulic conductivity is minimal, or the hydraulic conductivity may increase slightly.3

4.3 The requestor must provide information regarding the effective stresses to be applied during testing, especially for determining the final hydraulic conductivity. Using high effective stresses (that is, 35 kPa [5 psi] as allowed by Test Method D5084) can decrease an already increased hydraulic conductivity resulting in lower final hydraulic conductivity values. The long-term effect of freeze-thaw on the hydraulic conductivity of compacted soils is unknown. The increased hydraulic conductivity caused by freeze-thaw may be temporary. For example, the overburden pressure imparted by the waste placed on a soil liner in a landfill after being subjected to freeze-thaw may reduce the size of the cracks and pores that cause the increase in hydraulic conductivity. It is not known if the pressure would overcome the macroscopically increased hydraulic conductivity sufficiently to return the soil to its original hydraulic conductivity (prior to freeze-thaw). For cases such as landfill covers, where the overburden pressure is low, the increase in hydraulic conductivity due to freeze-thaw will likely be permanent. Thus, the requestor must take the application of the test method into account when establishing the effective stress.

4.4 The specimen shall be frozen to8201;−15°C [5°F] unless the requestor specifically dictates otherwise. It has been documented in the literature that the initial (that is, 0 to8201;−15°C [32°F to 5°F]) freezing condition causes the most significant effects3 in hydraulic conductivity. Freezing rate and ultimate temperature should mimic the field conditions. It has been shown that superfreezing (that is, freezing the specimen at very cold temperatures and very short time periods) produces erroneous results.

4.5 The thawed specimen temperature and thaw rate shall mimic field conditions. Thawing specimens in an oven (that is, overheating) will produce erroneous results.

4.6 Literature relating to this subject indicates that the effects of freeze-thaw usually occur by Cycle 10, thus it is recommended that at least 10 freeze-thaw cycles shall be performed to ensure that the full effects of freeze-thaw are measured. If the hydraulic conductivity values are still increasing after 10 freeze-thaw cycles, the test method shall be continued (that is, more freeze-thaw cycles shall be performed).

Note 3—The quality of the result produced by this standard is dependent on the competen......

ASTM D6035/D6035M-13

标准号
ASTM D6035/D6035M-13
发布
2013年
发布单位
美国材料与试验协会
替代标准
ASTM D6035/D6035M-19
当前最新
ASTM D6035/D6035M-19
 
 
引用标准
ASTM D1587 ASTM D2113 ASTM D2216 ASTM D3740 ASTM D4220 ASTM D5084 ASTM D6026 ASTM D653

推荐

混凝土内部水分究竟是多少,你测得清吗?

采用两节9伏电池提供个低能电场,当它以屋面上移动时,其底部柔性电随时监测屋面的导电性能。...

【原位测试技能get 3】原位测量岩土体渗透系数解决方案之钻孔压水试验

也可根据下式求渗透系数(k):1“Lu”=10-125px/s二、仪器与主要设备钻孔压水试验设备主要由压水系统,量系统和止水系统三部分组成。压水系统包括水箱、水位和水泵;量系统包括压力表和流量计;止水系统包括止水栓塞气泵等。...

【图解】带你认识新型原位钻孔压水试验

也可根据下式求渗透系数(k):1“Lu”=10-5cm/s二、仪器与主要设备钻孔压水试验设备主要由压水系统,量系统和止水系统三部分组成。压水系统包括水箱、水位和水泵;量系统包括压力表和流量计;止水系统包括止水栓塞气泵等。...

一种快速了解岩土体渗水特性试验方法

压水系统包括水箱、水位和水泵;量系统包括压力表和流量计;止水系统包括止水栓塞气泵等。在钻孔中,目标测试地层内用封堵器进行分隔(图中黑色部分),然后向该分隔区段施加 10 巴(150 psi)定压力,通过测试该区段中水体积变化来计算该地层渗透率。水体积变化可以从地面上水位中读出。时间通过秒表计时。钻孔压水试验用途:确定岩体渗透特性。计算岩体相对透水性和了解裂隙发育程度。...





Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号