ASTM E2956-14
监测LWR反应堆压力容器中子辐照的标准指南

Standard Guide for Monitoring the Neutron Exposure of LWR Reactor Pressure Vessels


ASTM E2956-14 发布历史

ASTM E2956-14由美国材料与试验协会 US-ASTM 发布于 2014。

ASTM E2956-14 在中国标准分类中归属于: F60 核反应堆综合。

ASTM E2956-14 监测LWR反应堆压力容器中子辐照的标准指南的最新版本是哪一版?

最新版本是 ASTM E2956-23

ASTM E2956-14 发布之时,引用了标准

  • ASTM E1005 反应堆压力容器监测E706(ⅢA)用辐射监视器的应用和分析的试验方法  
  • ASTM E1018 ASTM评价横切面数据文件、矩阵E 706 (IIB)的标准指南
  • ASTM E170 有关辐射测量和剂量测定的标准术语
  • ASTM E185 对轻水冷却核反应堆容器实施监督试验的标准操作规程E 706 (IF)
  • ASTM E2005 标准和参考中子场中反应堆剂量测定的基准试验的标准指南
  • ASTM E2006 轻水反应堆计算的基准试验的标准指南
  • ASTM E2215 从轻水慢化核动力反应堆容器中评估监视胶囊的标准实施规程
  • ASTM E482 E706(IID)反应堆容器监测中子传输方法应用的标准指南
  • ASTM E509 轻水冷却核反应堆容器在役退火的标准指南
  • ASTM E693 根据每个原子(DPA)、E706(ID)位移辨别铁和低合金钢中子照射特性的标准实施规程
  • ASTM E844 E-706(ⅡC)反应堆监视用传感器装置设计和辐照的标准指南
  • ASTM E853 轻水堆监测结果分析和说明标准规程
  • ASTM E900 预测中子辐射对反应堆容器材料的损害,E 706(IIF)
  • ASTM E944 反应堆监测时中子光谱调节法的应用

ASTM E2956-14的历代版本如下:

  • 2023年 ASTM E2956-23 LWR反应堆压力容器中子暴露监测的标准指南
  • 2021年 ASTM E2956-21 监测LWR反应堆压力容器中子辐照的标准指南
  • 2014年 ASTM E2956-14 监测LWR反应堆压力容器中子辐照的标准指南

 

4.1 Regulatory Requirements—The USA Code of Federal Regulations (10CFR Part 50, Appendix H) requires the implementation of a reactor vessel materials surveillance program for all operating LWRs. Other countries have similar regulations. The purpose of the program is to (1) monitor changes in the fracture toughness properties of ferritic materials in the reactor vessel beltline region resulting from exposure to neutron irradiation and the thermal environment, and (2) make use of the data obtained from surveillance programs to determine the conditions under which the vessel can be operated with adequate margins of safety throughout its service life. Practice E185, derived mechanical property data, and (r, θ, z) physics-dosimetry data (derived from the calculations and reactor cavity and surveillance capsule measurements (1) using physics-dosimetry standards) can be used together with information in Guide E900 and Refs. 4, 10-17 to provide a relation between property degradation and neutron exposure, commonly called a “trend curve.” To obtain this trend curve at all points in the pressure vessel wall requires that the selected trend curve be used together with the appropriate (r, θ, z) neutron field information derived by use of this guide to accomplish the necessary interpolations and extrapolations in space and time.

4.2 Neutron Field Characterization—The tasks required to satisfy the second part of the objective of 4.1 are complex and are summarized in Practice E853. In doing this, it is necessary to describe the neutron field at selected (r, θ, z) points within the pressure vessel wall. The description can be either time dependent or time averaged over the reactor service period of interest. This description can best be obtained by combining neutron transport calculations with plant measurements such as reactor cavity (ex-vessel) and surveillance capsule or RPV cladding (in-vessel) measurements, benchmark irradiations of dosimeter sensor materials, and knowledge of the spatial core power distribution, including the time dependence. Because core power distributions change with time, reactor cavity or surveillance capsule measurements obtained early in plant life may not be representative of long-term reactor operation. Therefore, a simple normalization of neutron transport calculations to dosimetry data from a given capsule is unlikely to give a satisfactory solution to the problem over the full reactor lifetime. Guide E482 and Guide E944 provide detailed information related to the characterization of the neutron field for BWR and PWR power plants.

4.3 Fracture Mechanics Analysis—Currently, operating limitations for normal heat up and cool down transients imposed on the reactor pressure vessel are based on the fracture mechanics techniques outlined in the ASME Boiler and Pressure Vessel Code. This code requires the assumption of the presence of a surface flaw of depth equal to one fourth of the pressure vessel thickness. In addition, the fracture mechanics analysis of accident-induced transients (Pressurized Thermal Shock, (PTS)) may involve evaluating the effect of flaws of varying depth within......

ASTM E2956-14

标准号
ASTM E2956-14
发布
2014年
发布单位
美国材料与试验协会
替代标准
ASTM E2956-21
当前最新
ASTM E2956-23
 
 
引用标准
ASTM E1005 ASTM E1018 ASTM E170 ASTM E185 ASTM E2005 ASTM E2006 ASTM E2215 ASTM E482 ASTM E509 ASTM E693 ASTM E844 ASTM E853 ASTM E900 ASTM E944

ASTM E2956-14相似标准


推荐

关于中子活化分析特点介绍

准确度高:由于中子和伽玛穿透性强,高纯锗探测器能量分辨率很高,伽玛谱清晰,且同时使用相对法和K0法进行定量,还有标准物质进行质量监测。目前非破坏高准度多元素分析优势仍然是其他分析方法难以逾越。  样品量范围宽:可进行亚微克~公斤式样进行分析。  低污染:由于式样可以直接照射和测量,无丢失、无空白试剂影响。  自动化:可以进行自动辐照、式样自动测量和自动分析。  ...

国家能源研发中心(重点实验室)工作巡礼(二十九)

目前,研发中心已启动了相关研究内容,包括与中广核集团工程公司和中国核动力研究设计院联合开展“百万千瓦级压水堆核电站反应堆压力容器国产化材料辐照性能试验研究”、与大亚湾核电运营管理有限责任公司联合开展“大型商用核电站运行十年环境影响技术研究”等项目,并取得了阶段性成果。一是在“百万千瓦级压水堆核电站反应堆压力容器国产化材料辐照性能试验研究”项目方面。...

中子活化分析概述

  中子活化分析,又称仪器中子活化分析,是通过鉴别和测试式样因辐照感生放射性核素特征辐射,进行元素和核素分析放射分析化学方法。活化分析基础是核反应,以中子或质子照射试样,引起和反应,使之活化产生辐射能,用γ射线分光仪测定光谱,根据波峰分析确定试样成分;根据辐射能强弱进行定量分析。一般中子源由核动力装置提供,质子源采用回旋加速器或范德格拉夫式加速器。...

关于中子活化分析简介

  中子活化分析,又称仪器中子活化分析,是通过鉴别和测试式样因辐照感生放射性核素特征辐射,进行元素和核素分析放射分析化学方法。活化分析基础是核反应,以中子或质子照射试样,引起核反应,使之活化产生辐射能,用γ射线分光仪测定光谱,根据波峰分析确定试样成分;根据辐射能强弱进行定量分析。一般中子源由核动力装置提供,质子源采用回旋加速器或范德格拉夫式加速器。...


谁引用了ASTM E2956-14 更多引用





Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号