ASTM C1769-15
为测定选定同位素以及评估燃料燃耗的废核燃料分析的标准实施规程

Standard Practice for Analysis of Spent Nuclear Fuel to Determine Selected Isotopes and Estimate Fuel Burnup


标准号
ASTM C1769-15
发布
2015年
发布单位
美国材料与试验协会
当前最新
ASTM C1769-15
 
 
引用标准
ASTM C1625 ASTM C859 ASTM D1193 ASTM E244
适用范围

5.1 This standard practice defines a measure of heavy element atom percent fission from which the output of heat during irradiation can be estimated.

5.2 This standard practice is restricted in use to samples where accurate pre-irradiation U and Pu isotopic analysis is available. This data should be available from the fuel manufacture.

5.3 The contribution of 238U fast fission is not subject to measurement from isotopic analysis. For reactors in which the majority of fissions are caused by thermal neutrons, the contribution may be estimated from the fast fission factors, ε, found in each reactor design document.

5.4 In post-irradiation isotopic analysis, take extreme care to avoid environmental uranium contamination of the sample. This is simplified by using sample sizes in which the amount of each uranium isotope is more than 1000 times the levels observed in a blank carried through the complete chemistry and mass spectrometry procedure employed.

5.5 Take care to make sure that both the pre-irradiation and the post-irradiation samples analyzed are representative. In the pre-irradiation fuel, the 235U and 236U atom ratio content may vary from lot to lot. 236U is not found in naturally uranium in measurable quantity (<2 ppm of a u basis) but forms during irradiation and increases with each successive pass through the fuel cycle. In the post-irradiation examination of a large fuel element, the atom percent fission normally varies radially and axially. Radial and axial profiles of atom percent fission can be determined by analyzing samples obtained from along the radius or axis of the fuel element. An average value of atom percent fission can be obtained by totally dissolving the fuel to be averaged, and then mixing and analyzing an aliquot of the resultant solution.

5.6 The burnup of an irradiated nuclear fuel can be determined from the amount of a fission product formed during irradiation. Among the fission products, 148Nd has the following properties to recommend it as an ideal burnup indicator: (1) It is not volatile. (2) It does not migrate in solid fuels below their recrystallization temperature. (3) It has no volatile precursors. (4) It is nonradioactive and requires no decay corrections. (5) It has a low destruction cross section. (6) Formation of 148Nd from adjacent mass chains can be corrected for. (7) It has adequate emission characteristics for mass analysis. (8) Its fission yield is nearly equivalent for 235U and 239Pu. (9) Its fission yield is essentially independent......


ASTM C1769-15相似标准


推荐

【特邀专栏】周世光:参与研制“两弹一星”化学化工人

1960年调入原子能所,领导、组织了核燃料后处理萃取工艺、原子弹引爆装置制备、核试验用钋-210等放射源研制、氚提取生产工艺、核试验当量燃耗测定、核工业产品中铀和钚及杂质分析坚定方法研究等工作;在核化工领域成就卓著。1980年当选为中国科学院学部委员。酒泉原子能联合企业总工程师姜圣阶  酒泉原子能联合企业位于“大漠孤烟直,长河落日圆”玉门地区茫茫戈壁深处。...

实验室分析方法--同位素质谱法

第二次世界大战后期,随着军事强国对放射性同位素需求迫切,同位素质谱法成为同位素分离效率监督和大量同位素分离产品丰度质量鉴定最准确方法,包括用气体同位素质谱法测量氢、氘、氚等气体核素,用热电离质谱法测量铀、钚等锕系元素同位素。与此同时,在核物理、核化学研究工作中一些重要环节,诸如核燃料燃耗测定、核反应裂变产额测定测量,同位素质谱法给出结果最准确。 ...

核安全与放射性污染防治十二五规划发布 投资达798亿元

完成沿海核电厂地震、海啸影响复核、评估及必要改造。  6。制定并实施严重事故管理导则。  7。对在严重事故下用于缓解事故设备和系统可用性以及可能发生氢气爆炸进行评估,并根据评估结果实施相应改进。  8。开展抗外部事件安全裕量分析评估。  9。研究制订核电基地多机组同时进入应急状态后响应方案。  2015年底前:  10。开展外部事件概率安全分析。  ...

核污排海,放射性核素离我们有多远?

有研究表明,在一万多年时间里,核燃料循环过程中不同阶段释放放射性核素对全球集体辐射剂量主要贡献来自于全球弥散碳-14;此外,核电厂中、低水平废物处理集体有效剂量几乎全部来自于碳-14。核废水释放碳-14易沉积并被海洋生物吸收从而对人类造成潜在影响。2011年至2012年,我国相继发布三部标准,对核动力厂液态流出物碳-14测量提出了明确要求。...


谁引用了ASTM C1769-15 更多引用





Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号