ASTM E2059-15e1
快中子剂量测定用核研究乳剂的应用和分析的标准实施规程

Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry


标准号
ASTM E2059-15e1
发布
2015年
发布单位
美国材料与试验协会
替代标准
ASTM E2059-20
当前最新
ASTM E2059-20
 
 
引用标准
ASTM E1005 ASTM E706 ASTM E854 ASTM E910 ASTM E944
适用范围

4.1 Integral Mode Dosimetry—As shown in 3.2, two different integral relationships can be established using proton-recoil emulsion data. These two integral reactions can be obtained with roughly an order of magnitude reduction in scanning effort. Consequently this integral mode is an important complementary alternative to the customary differential mode of NRE spectrometry. The integral mode can be applied over extended spatial regions, for example, perhaps up to as many as ten in-situ locations can be covered for the same scanning effort that is expended for a single differential measurement. Hence the integral mode is especially advantageous for dosimetry applications which require extensive spatial mapping, such as exist in Light Water Reactor-Pressure Vessel (LWR-PV) benchmark fields (see Test Method E1005). In low power benchmark fields, NRE can be used as integral dosimeters in a manner similar to RM, solid state track recorders (SSTR) and helium accumulation monitors (HAFM) neutron dosimeters (see Test Methods E854 and E910). In addition to spatial mapping advantages of these other dosimetry methods, NRE offer fine spatial resolution and can therefore be used in-situ for fine structure measurements. In integral mode scanning, both absolute reaction rates, that is I(ET) and J(Emin), are determined simultaneously. Separate software codes need to be used to permit operation of a computer based interactive system in the integral mode (see Section 9). It should be noted that the integrals I(ET) and J(Emin) possess different units, namely proton-recoil tracks/MeV per hydrogen atom and proton-recoil tracks per hydrogen atom, respectively.

4.2 Applicability for Spectral Adjustment Codes—In the integral mode, NRE provide absolute integral reaction rates that can be used in neutron spectrum least squares adjustment codes (see Guide E944). In the past, such adjustment codes could not utilize NRE integral reaction rates because of the non-existence of NRE data. NRE integral reaction rates provide unique benchmark data for use in least squares spectral adjustment codes. The unique significance of NRE integral data arises from a number of attributes, which are described separately below. Thus, inclusion of NRE integral reaction rate data in the spectral adjustment calculations can result in a significant improvement in the determination of neutron spectra in low power benchmark fields.

4.3 The Neutron Scattering Cross Section of Hydrogen—Integral NRE reaction rates are based on the standard neutron scattering cross section of hydrogen. For fast neutron spectrometry and dosimetry applications, the accuracy of this (n,p) cross section over extended energy regions is essentially unmatched. A semi-empirical representation of the energy-dependence of the (n,p) cross section is given in <......


推荐





Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号