L81;C43 标准查询与下载



共找到 3 条与 相关的标准,共 1

This guide provides a tutorial introduction to the theory and use of computed tomography. This guide begins with a overview intended for the interested reader with a general technical background. Subsequent, more technical sections describe the physical and mathematical basis of CT technology, the hardware and software requirements of CT equipment, and the fundamental measures of CT performance. This guide includes an extensive glossary (with discussion) of CT terminology and an extensive list of references to more technical publications on the subject. Most importantly, this guide establishes consensus definitions for basic measures of CT performance, enabling purchasers and suppliers of CT systems and services to communicate unambiguously with reference to a recognized standard. This guide also provides a few carefully selected equations relating measures of CT performance to key system parameters. General Description of Computed Tomography8212;CT is a radiographic inspection method that uses a computer to reconstruct an image of a cross-sectional plane (slice) through an object. The resulting cross-sectional image is a quantitative map of the linear X-ray attenuation coefficient, μ, at each point in the plane. The linear attenuation coefficient characterizes the local instantaneous rate at which X-rays are removed during the scan, by scatter or absorption, from the incident radiation as it propagates through the object (See 7.5). The attenuation of the X-rays as they interact with matter is a well-studied problem (1) and is the result of several different interaction mechanisms. For industrial CT systems with peak X-ray energy below a few MeV, all but a few minor effects can be accounted for in terms of the sum of just two interactions: photoelectric absorption and Compton scattering (1). The photoelectric interaction is strongly dependent on the atomic number and density of the absorbing medium; the Compton scattering is predominantly a function of the electron density of the material. Photoelectric attenuation dominates at lower energies and becomes more important with higher atomic number, while Compton scattering dominates at higher energies and becomes more important at lower atomic number. In special situations, these dependencies can be used to advantage (see 7.6.2 and references therein). One particularly important property of the total linear attenuation coefficient is that it is proportional to material density, which is of course a fundamental physical property of all matter. The fact that CT images are proportional to density is perhaps the principal virtue of the technology and the reason that image data are often thought of as representing the distribution of material density within the object being inspected. This is a dangerous oversimplification, however. The linear attenuation coefficient also carries an energy dependence that is a function of material composition. This feature of the attenuation coefficient may or may not (depending on the materials and the energies of the X-rays involved) be more important than the basic density dependence. In some instances, this effect can be detrimental, masking the density differences in a CT image; in other instances, it can be used to advantage, enhancing the contrast between different materials of similar density. The fundamental difference between CT and conventional radiography is shown in Fig. 1. In conventional radiography, information on the slice plane “P” projects into a single line, “A-A;” whereas with the associated CT image, the full spatial information is preserved. CT information is derived from a large numbe............

Standard Guide for Computed Tomography (CT) Imaging

ICS
35.240.80 (IT applications in health care technolo
CCS
L81;C43
发布
2011
实施

This practice is applicable for the systematic assessment of the internal structure of a material or assembly using CT technology. This practice may be used for review by system operators, or to prescribe operating procedures for new or routine test objects. This practice provides the basis for the formation of a program for quality control and its continuation through calibration, standardization, reference samples, inspection plans, and procedures.1.1 This practice is for computed tomography (CT), which may be used to nondestructively disclose physical features or anomalies within a test object by providing radiological density and geometric measurements. This practice implicitly assumes the use of penetrating radiation, specifically X-ray and γ-ray. 1.2 CT systems utilize a set of transmission measurements made along paths through the test object from many different directions. Each of the transmission measurements is digitized and stored in a computer, where they are subsequently reconstructed by one of a variety of techniques. A treatment of CT principles is given in Guide E1441. 1.3 CT is broadly applicable to any material or test object through which a beam of penetrating radiation passes. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object without the structural superposition in projection radiography. 1.4 This practice describes procedures for performing CT examinations. This practice is to address the general use of CT technology and thereby facilitate its use. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific safety statements, see Section 8, NBS Handbook 114, and Federal Standards 21 CFR 1020.40 and 29 CFR 1910.96.

Standard Practice for Computed Tomographic (CT) Examination

ICS
CCS
L81;C43
发布
2011
实施

1.1 Computed tomography (CT) is a radiographic method that provides an ideal examination technique whenever the primary goal is to locate and size planar and volumetric detail in three dimensions. Because of the relatively good penetrability of X-rays, as well as the sensitivity of absorption cross sections to atomic chemistry, CT permits the nondestructive physical and, to a limited extent, chemical characterization of the internal structure of materials. Also, since the method is X-ray based, it applies equally well to metallic and non-metallic specimens, solid and fibrous materials, and smooth and irregularly surfaced objects. When used in conjunction with other nondestructive evaluation (NDE) methods, such as ultrasound, CT data can provide evaluations of material integrity that cannot currently be provided nondestructively by any other means.1.2 This guide is intended to satisfy two general needs for users of industrial CT equipment: (1) the need for a tutorial guide addressing the general principles of X-ray CT as they apply to industrial imaging; and (2) the need for a consistent set of CT performance parameter definitions, including how these performance parameters relate to CT system specifications. Potential users and buyers, as well as experienced CT inspectors, will find this guide a useful source of information for determining the suitability of CT for particular examination problems, for predicting CT system performance in new situations, and for developing and prescribing new scan procedures.1.3 This guide does not specify test objects and test procedures for comparing the relative performance of different CT systems; nor does it treat CT inspection techniques, such as the best selection of scan parameters, the preferred implementation of scan procedures, the analysis of image data to extract densitometric information, or the establishment of accept/reject criteria for a new object.1.4 Standard practices and methods are not within the purview of this guide. The reader is advised, however, that examination practices are generally part and application specific, and industrial CT usage is new enough that in many instances a consensus has not yet emerged. The situation is complicated further by the fact that CT system hardware and performance capabilities are still undergoing significant evolution and improvement. Consequently, an attempt to address generic examination procedures is eschewed in favor of providing a thorough treatment of the principles by which examination methods can be developed or existing ones revised.1.5 The principal advantage of CT is that it nondestructively provides quantitative densitometric (that is, density and geometry) images of thin cross sections through an object. Because of the absence of structural noise from detail outside the thin plane of inspection, images are much easier to interpret than conventional radiographic data. The new user can learn quickly (often upon first exposure to the technology) to read CT data because the images correspond more closely to the way the human mind visualizes three-dimensional structures than conventional projection radiography. Further, because CT images are digital, they may be enhanced, analyzed, compressed, archived, input as data into performance calculations, compared with digital data from other NDE modalities, or transmitted to other locations for remote viewing. Additionally, CT images exhibit enhanced contrast discrimination over compact areas larger than 20 to 25 pixels. This capability has no classical analog. Contrast discrimination of better than 0.1 % at three-sigma confidence levels over areas as small as one-fifth of one percent the size of the object of interest are common.1.6 With proper calibration, dimensional inspections and absolute density determinations can also be made very accurately. Dimensionally, virtually all CT systems provide a pixel resolution of rough......

Standard Guide for Computed Tomography (CT) Imaging

ICS
35.240.80 (IT applications in health care technolo
CCS
L81;C43
发布
2000
实施



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号