F40 核材料、核燃料综合 标准查询与下载



共找到 259 条与 核材料、核燃料综合 相关的标准,共 18

5.1 The total evaporation method is used to measure the isotopic composition of uranium and plutonium materials, and may be used to measure the elemental concentrations of the two elements when employing the IDMS technique. 5.2 Uranium and plutonium compounds are used as nuclear reactor fuels. In order to be suitable for use as a nuclear fuel the starting material must meet certain criteria, such as found in Specifications C757, C833, C753, C776, C787, C967, C996, C1008, or as specified by the purchaser. The uranium concentration, plutonium concentration, or both, and isotope abundances are measured by thermal ionization mass spectrometry following this method. 5.3 The total evaporation method allows for a wide range of sample loading with no significant change in precision or accuracy. The method is also suitable for trace-level loadings with some loss of precision and accuracy. The total evaporation method and modern instrumentation allow for the measurement of minor isotopes using ion counting detectors, while the major isotope(s) is(are) simultaneously measured using Faraday cup detectors. 5.4 The new generation of miniaturized ion counters allow extremely small samples, in the picogram range, to be measured via the total evaporation method. The method may be employed for measuring environmental or safeguards inspection samples containing nanogram quantities of uranium or plutonium. Very small loadings require special sample handling and careful evaluation of measurement uncertainties. 5.5 Typical uranium analyses are conducted using sample loadings between 50 nanograms and several micrograms. For uranium isotope ratios the total evaporation method had been used in several recent NBL isotopic certified reference material (CRM) characterizations (for example (2, 3)). A detailed comparison of the total evaporation data on NBL uranium CRMs analyzed by the MAT 261 and TRITONTM instruments is provided in Ref (5). For total evaporation, plutonium analyses are generally conducted using sample loads in the range of 30 to 400 nanograms of plutonium. 1.1 This method describes the determination of the isotopic composition, or the concentration, or both, of uranium and plutonium as nitrate solutions by the total evaporation method using a thermal ionization mass spectrometer (TIMS) instrument. Purified uranium or plutonium nitrate solutions are deposited onto a metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion currents are continually measured until the whole sample is exhausted. The measured ion currents are integrated over the course of the measurement and normalized to a reference isotope ion current to yield isotope ratios.

Standard Test Method for Determination of Uranium or Plutonium Isotopic Composition or Concentration by the Total Evaporation Method Using a Thermal Ionization Mass Spectrometer

ICS
27.120.30
CCS
F40
发布
2017
实施

5.1 In order to demonstrate conformance to regulatory requirements and support the post-closure repository performance assessment information is required about the attributes, characteristics, and behavior of the SNF. These properties of the SNF in turn support the transport, interim storage, and repository pre-closure safety analyses, and repository post-closure performance assessment. In the United States, the interim dry storage of commercial LWR SNF is regulated per the Code of Federal Regulations, Title 10, Part 72, which requires that the cladding must not sustain during the interim storage period any “gross” damage sufficient to release fuel from the cladding into the container environment. In other countries, the appropriate governing body will set regulations regarding interim dry storage of commercial LWR SNF. However, cladding damage insufficient to allow the release of fuel during the interim storage period may still occur in the form of small cracks or pinholes. These cracks/pinholes could be sufficient to classify the fuel as “ failed fuel” or “breached fuel” per the definitions given in Section 3 for repository disposal purposes, because they could allow contact of water vapor or liquid with the spent fuel matrix and thus provide a pathway for radionuclide release from the waste form. Also, pinholes/cracks in fuel rods in dry or wet interim storage can also develop into much larger defects (for example, the phenomenon of cladding “unzipping”) under long-term repository conditions. Therefore SNF characterization should be adequate to determine the amount of “failed fuel” for either usage as required. This could involve the examination of reactor operating records, ultrasonic testing, sipping, and analysis of the residual water and drying kinetics of the spent fuel assemblies or canisters. 5.2 Regulations in each country may contain constraints and limitations on the chemical or physical (or both) properties and long-term degradation behavior of the spent fuel and HLW in the repository. Evaluating the design and performance of the waste form (WF), waste packaging (WP), and the rest of the engineered barrier system (EBS) with respect to these regulatory constraints requires knowledge of the chemical/physical characteristics and degradation behavior of the SNF that could be provided by the testing and data evaluation methods provided by this guide, using the United States as an example, as follows: 5.2.1 In the United States, for example, Code of Federal Regulations, Title 10, Part 60 Sections 135 and 113 require that the WF be a material that is solid, non-particulate, non-pyrophoric, and non-chemically reactive, that the waste package contain no liquid, particulates, or combustible materials and that the materials/components of the EBS be designed to provide—assuming anticipated processes and events—substantially complete containment of the HLW for the NRC-designated regulatory period. 5.2.2 In the United States, for example, Code of Federal Regulations, Title 10, Part 63 Section 113 requires that the EBS be designed such that, working in combination with the natural barriers, the performance assessment of the EBS demonstrates conformance to the annual reasonably expected individual dose protection standard of Code of Federal Regulations, Title 10, Part 63 Section 311 and the reasonably maximally exposed individual standard of Code of Federal Regulations, Title 10, Part 63 Section 312, and shall not

Standard Guide for Characterization of Spent Nuclear Fuel in Support of Interim Storage, Transportation and Geologic Repository Disposal

ICS
13.030.30 ; 27.120.30
CCS
F40
发布
2017
实施

本标准规定了地浸砂岩型铀矿资源/储量估算原则、指标和参数的确定、估算方法的选择以及矿体圈定的原则,并对年度资源量估算和资源/储量估算的质量等提出了具体要求。 本标准适用于地浸砂岩型铀矿资源/储量的估算,也适用于地浸砂岩型铀矿资源/储量勘查报告的评审。

Guidebook on resources/reserves estimation for in-situ leaching sandstone type uranium deposits

ICS
27.120.30
CCS
F40
发布
2016-12-14
实施
2017-03-01

Regulations for Compilation of Geological Maps of Hard Rock Uranium Deposits Part 1: Comprehensive Borehole Histogram, Exploration Line Profile, and Ore Body Longitudinal (Horizontal) Projection

ICS
27.120.30
CCS
F40
发布
2016-12-14
实施
2017-03-01

Regulations for Compilation of Geological Maps of Hard Rock Uranium Deposits Part 3: Ore-forming Laws and Prospective Forecast Maps

ICS
27.120.30
CCS
F40
发布
2016-12-14
实施
2017-03-01

Regulations for Compilation of Geological Maps of Hard Rock Uranium Deposits Part 2: Structural Outline Map

ICS
27.120.30
CCS
F40
发布
2016-12-14
实施
2017-03-01

Dieser Teil von ISO 15366 beschreibt Verfahren zur chemischen Trennung und Reinigung von Uran und Plutonium in Lösungen von bestrahlten Leichtwasserreaktorbrennstoffen und Proben von hochaktiven Flüssigabfällen aus Brennstoff-Wiederaufbereitungsanlagen, bevor die Isotopenanalyse z. B. durch Massenspektrometrie- (siehe ISO 8299) oder Alphaspektrometrieverfahren (siehe ISO 11483) durchgeführt wird. Dieser Teil von ISO 15366 beschreibt ein Trennverfahren, das sich leicht von dem nach ISO 15366-1 unterscheidet; es basiert auf den gleichen chemischen Grundlagen, aber es werden schmalere Säulen, unterschiedliches Trägermaterial und spezielle Reinigungsschritte verwendet; das Verfahren ist anwendbar auf Proben mit einem Gehalt an Plutonium und Uran im Nanogrammbereich und darunter. Die Nachweisgrenzen liegen bei 500 pg Plutonium und 500 pg Uran. In Anhang A ist die Vorbereitung der Säulen und des Säulenträgermaterials beschrieben. Im Gegensatz zu ISO 15366-1 wird aufgrund der geringen Mengen an Uran und Plutonium eine zusätzliche Reinigung auf einem Anionenaustauschharz durchgeführt.

Nuclear fuel technology - Chemical separation and purification of uranium and plutonium in nitric acid solutions for isotopic and isotopic dilution analysis by solvent extraction chromatography - Part 2: Samples containing plutonium and uranium in the nan

ICS
27.120.30
CCS
F40
发布
2016-04
实施

Dieser Teil von ISO 15366 beschreibt Verfahren zur chemischen Trennung und Reinigung von Uran und Plutonium in Lösungen von bestrahlten Leichtwasserreaktorbrennstoffen und Proben von hochaktiven Flüssigabfällen aus Brennstoff-Wiederaufbereitungsanlagen, bevor die Isotopenanalyse z. B. durch Massenspektrometrie- (siehe ISO 8299) oder Alphaspektrometrieverfahren (siehe ISO 11483) durchgeführt wird. Dieser Teil von ISO 15366 beschreibt ein Verfahren zur Trennung von Uran und Plutonium in Proben aus verbrauchten Brennstoffen, das auf einem Chromatographieverfahren basiert. Das Verfahren ist anwendbar auf Proben mit einem Gehalt von 1 µg bis 150 µg Pu(IV) und -(VI) und 0,1 mg bis 2 mg U(IV) und -(VI) in bis zu 2 ml Salpetersäurelösung, 3 mol - l-1. Er ist anwendbar für Uran-Plutonium-Gemische dessen Mischungsverhältnis U:Pu von 0 bis 200 betragen kann.

Nuclear fuel technology - Chemical separation and purification of uranium and plutonium in nitric acid solutions for isotopic and isotopic dilution analysis by solvent extraction chromatography - Part 1: Samples containing plutonium in the microgram range

ICS
27.120.30
CCS
F40
发布
2016-04
实施

Technical Guidelines for Manufacturing Supervision of Conventional Island Equipment in Nuclear Power Plants Part 13: High Voltage Motors

ICS
27.120.99
CCS
F40
发布
2016-02-05
实施
2016-07-01

(U, Pu)O2 powders and sintered pellets - Determination of chlorine and fluorine

ICS
27.120.30
CCS
F40
发布
2015-11-07
实施
2015-11-07

Unsealed radioactive substances - Identification and documentation (ISO 3925:2014); German version EN ISO 3925:2015

ICS
13.280
CCS
F40
发布
2015-11
实施

本部分规定了地浸砂岩型铀矿地层等厚度图的编图内容、格式、方法及技术要求。 本部分适用于地浸砂岩型铀矿地质工作的地层等厚度图的编制工作,可作为铀矿地质成果验收的依据。

Specification for series of geological maps for in-situ leaching sandstone type uranium deposits.Part 14: stratum contour map

ICS
27.127.30
CCS
F40
发布
2014-11-17
实施
2015-02-01

本标准规定了铀矿井下原地爆破浸出的爆破工艺技术要求。本标准适用于采用原地爆破作业的铀矿山。其它采用原地爆破作业的非铀矿井和地下工程,可以参照执行。

Technical requirements for in-site basting of underground uranium mine

ICS
27.120.30
CCS
F40
发布
2014-11-17
实施
2015-02-01

本标准规定了铀矿石密度、湿度的测量方法、技术及质量要求。本标准适用于铀矿勘查各阶段中铀矿石密度和湿度的测量。

Measurement rules for density and humidity of uranium ore

ICS
27.120.99
CCS
F40
发布
2014-11-17
实施
2015-02-01

本部分规定了地浸砂岩型铀矿水文地球化学图的编图内容、格式、方法及技术要求。 本部分适用于地浸砂岩型铀矿区域评价及勘查各阶段的编图工作,可作为铀矿地质项目成果验收的依据。

Specification for series of geological maps for in-situ leaching sandstone type uranium deposits.Part 8: hydrogeochemical map

ICS
27.120.30
CCS
F40
发布
2014-11-17
实施
2015-02-01

本部分规定了地浸砂岩型铀矿构造地貌图的编制内容、方法和技术要求等。 本部分适用于地浸砂岩型铀资源区域评价和综合研究阶段中小比例尺编图工作,可作为铀矿地质项目成果验收的依据。

Specification for series of geological maps for in-situ leaching sandstone type uranium deposits.Part 12: Structural landform map

ICS
27.127.30
CCS
F40
发布
2014-11-17
实施
2015-02-01

本部分规定了地浸砂岩型铀矿地面物探综合成果图、铀镭平衡系数平面分布图、镭氡平衡系数平面分布图和物探参数孔综合成果图的内容、编制方法和技术要求等。 本部分适用于地浸砂岩型铀矿勘查各阶段的物探工作,可作为铀矿地质项目成果验收的依据。

Specification for series of geological maps for in-situ leaching sandstone type uranium deposits.Part 9: geophysical comprehensive achievement maps

ICS
27.127.30
CCS
F40
发布
2014-11-17
实施
2015-02-01

本部分规定了地浸砂岩型铀矿地质图件构造纲要图、构造分区图的编制内容、方法和技术要求等。 本部分适用于地浸砂岩型铀资源区域评价和综合研究阶段的编图工作,可作为铀矿地质项目成果验收的依据。

Specification for series of geological maps for in-situ leaching sandstone type uranium deposits.Part 6: structural outline map and structural zonation map

ICS
27.120.30
CCS
F40
发布
2014-11-17
实施
2015-02-01

本部分规定了地浸砂岩型铀成矿规律与远景预测图编制的内容、方法和技术要求等。 本部分适用于地浸砂岩型铀矿区域评价和勘查各阶段的地质I:作,可作为地浸砂岩型铀矿地质工作成果验收的依据。

Specification for series of geological maps for in-situ leaching sandstone type uranium deposits.part 5: matallogenic law and prospective prognosis map

ICS
27.120.30
CCS
F40
发布
2014-11-17
实施
2015-02-01

本标准规定了航空放射性异常(以下简称航放异常)查证工作的设计、工作方法、质量要求、资料处理与解释、成果报告编写与归档等内容和技术要求。本标准适用于航放异常查证工作,地面放射性异常查证工作也可参照执行。

Requirements for airborne radioactivity anomaly inspection

ICS
27.120.99
CCS
F40
发布
2014-11-17
实施
2015-02-01



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号