实验方法> 生物化学技术> 生化标记技术>量子点作为生物荧光标记物的研究进展

量子点作为生物荧光标记物的研究进展

关键词: 量子点 生物荧光标记物 进展来源: 互联网

为了弄清生物体内各种反应的机理,人们必须对生物体内各种蛋白质或者细胞的相互作用进行监控,过去主要用同位素有机荧光染料标记细胞和生物分子来达到这一目的。但众所周知同位素和有机染料存在一系列的缺陷从而限制了其在生物活体内的应用。量子点的出现解决了这一问题,并大有希望成为新一代生物荧光标记物。

量子点(Quantum dots,QDs)又称半导体纳米晶体(Semiconductor nanocrystal),是一种由Ⅱ-Ⅵ族(如CdSe、CdTe、CdS、ZnSe等)或Ⅲ-Ⅴ族(如InP、InAs等)元素组成的纳米颗粒,目前研究较多的是CdSe、CdTe等。量子点一般是直径为1-10nm的球状晶体,也有将其制成棒状和四脚锥体状的报道,但球状量子点在生物学中的应用最为广泛。因此本文将着重围绕球状量子点来对量子点的光学特性、制备方法及其作为荧光标记物在生物学中的研究进展作一简要综述。

1、量子点的光学特性

与传统的有机荧光染料或镧系配合物相比,荧光量子点具有以下光学特性:(1) 量子点的发射波长可通过控制它的粒径大小来“调谐”,因而可获得多种可分辨的颜色。以ZnS 包被的CdSe纳米颗粒为例,当CdSe核心直径为1.8nm时,发射蓝光;当CdSe核心直径为7nm时,发射红光,不同尺寸大小的CdSe的荧光可涵盖整个可见光谱。(2) 不同大小的纳米晶体能被同一波长的光激发并发出不同颜色的光,其激发光谱宽且连续分布,而发射光谱呈对称分布且宽度窄,因此不同的量子点可以由同一波长的光激发,并允许同时使用不同光谱的量子点来进行生物标记。而不同荧光染料分子需多个激发波长,且激发光谱窄,发射光谱宽,不同颜色荧光分子的光谱容易相互重叠,因而很难同时使用两种以上的荧光分进行多色标记。(3)量子点具有良好的光化学稳定性,可以耐受更强的激发光和更长的光发射周期。染料荧光分子的激发和发射周期一般只有几分钟,而量子点通常可持续几个小时,如ZnS包被的CdS量子点的稳定性是罗丹明6G的100倍。

2、量子点的合成

2.1合成方法

对于做生物荧光探针的量子点来说,目前主要有两种合成方法:一种是在水相中合成,另一种是采用胶体化学的方法在有机相中合成.1993年以前,量子点主要通过在水溶液中加入稳定剂如硫化甘油、聚磷酸盐等制得。近年来也有在水溶液中合成量子点的报道,如Lin 等采用巯基丙酸为稳定剂,通过静电作用直接在水溶液中合成了CdTe半导体纳米粒子。在水溶液中直接合成量子点操作简单,所用材料价格低、毒性小。然而,在水溶液中合成的量子点荧光产率都很低,量子点的尺寸分布范围也较大(相对标准误差RSD>15%)。

科学家经过许多尝试,都没有完全解决水溶液中合成的量子点存在的荧光产率低、尺寸分布广等缺点,因此近年来人们越来越多地采用在有机体系中合成量子点。1993年,Murray等用(CH3)2Cd和TOPSe(Trioctylphospine selenide)作为前体在高温的氧化三辛基磷(TOPO)溶液中合成了CdSe量子点。这种方法能制备出具有良好结构的量子点和较小的尺寸变异系数(RSD<5%),但是其荧光产率仍然很低(大约只有10%)。后来,人们发现在量子点表面包被一层ZnS能显著提高量子点的量子产率。1996年,Hines等合成了ZnS包覆的CdSe量子点,其在室温下的荧光产率显著提高。Dabbousi等在此基础上,将其制备好的单分散的CdSe纳米颗粒表面包覆了一层ZnS,将其量子产率提高到30%-50%。近来,Peng等人对传统的合成方法进行了改进,他们用CdO作为原料,一步合成了高荧光产率的CdS、CdSe、CdTe纳米晶体。相对于传统的核/壳纳米微粒,该方法合成的量子点在不进行表面包被的情况下也具有非常高的量子产率。

2.2 水溶性量子点的制备

采用胶体化学法在有机体系中制备量子点,其疏水表面限制了量子点在生物环境中的应用。难以获得生物相容性的量子点也是目前限制量子点在生物科学中应用的最大问题。因此在与生物分子偶联之前,必须先将其表面用一定的双功能基团修饰,使其具备一定的水溶性同时又能与生物分子偶联。科学家通过不断努力已发展了几种制备水溶性量子点的方法。

Bruchez等首先报道了水溶性量子点的制备,他们直接用3-(巯基丙基)三氧甲基硅烷(MPS)取代氧化三辛基磷(TOPO)保护的(CdSe)ZnS量子点上的TOPO分子,再将三氧甲基硅烷水解,便在量子点的表面形成了一层带有二氧化硅/硅氧烷的壳,然后再将量子点与一些双功能的甲氧基化合物(如氨基丙基三甲氧基硅烷、三甲氧基丙基脲等)反应,便制成了水溶性的量子点。另外一种制备水溶性量子点的方法是直接吸附一些双功能配基,如Chan等将巯基乙酸和一种有机碱加入到TOPO保护的量子点的氯仿溶液中,有机碱将巯基和羧基上质子夺去后,量子点表面的Cd2+和Zn2+可通过静电引力与巯基乙酸相结合,量子点便可以从有机溶剂中沉淀出来,从而获得水溶性量子点。

硅烷化的QDs有很好的稳定性,但是每次只能制得微克量级的量子点,而且在中性pH条件下,量子点表面残留的硅氧基易导致凝胶或沉淀生成。相应地,通过直接吸附巯基乙酸虽然每次可获得数克水溶性量子点,但巯基乙酸不稳定,很容易从量子点表面脱附,从而导致量子点团聚和沉淀。为解决这些矛盾,研究者已另外探索出两种制备方法:一种方法是通过疏水作用和离子相互作用在量子点表面包被一层蛋白质,初步结果表明蛋白质包被的QDs在缓冲液中至少能稳定存放两年,其量子产率也与在氯仿中制得的QDs差不多;另一种方法是先制备内部镂空的高分子小球(micell),然后将量子点装入高分子小球的孔隙中,如Dubertret等将未进行任何表面改性的(CdSe)ZnS量子点直接装入由聚乙二醇(PEG)、磷脂酰乙醇胺(PE)和磷脂酰胆碱(PC)混合组成的磷脂高分子微球的疏水核心,这样制成的量子点微球大小均匀,形状规则,几乎不存在团聚情况。

推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号