通过对霍耳系数的原位测量,研究人员确定了拓扑绝缘体Bi2Te3的超导转变温度、霍耳系数与压力间的关系。在常压下,拓扑绝缘体Bi2Te3的霍尔系数为正,表现为空穴导电。在3.2GPa附近样品转变为超导体时,霍尔系数伴随一个转折。特别是在8GPa样品由常压结构转变为高压结构HP I时,霍尔系数出现由正到负的转变,表明载流子由空穴为主,转变为以电子为主。这些结果表明,在压力作用下,Bi2Te3的电子结构呈现出相应的变化。

  值得特别注意的是,在3.8-8GPa之间,Bi2Te3保持着常压下的晶体结构,而且又变为超导体。一个有趣的问题是,这时的Bi2Te3是否成为拓扑超导体。这个问题还需要进一步的理论和实验工作来解决。

  在超高压、低温、磁场等综合极端条件下进行原位电阻、磁阻、交流化率和霍尔效应等测量是超导体及一些功能材料研究的重要实验手段之一,为发现新的量子现象、探索超导机理拓展了研究的物理维度。该项工作主要是在该课题组新近自主研制的先进的低温-高压-磁场综合测量系统上完成的。该设备集超高压(100 GPa)、低温(1.5K)、强磁场(9T)为一体,通过压力、磁场和温度三个物理维度的调控可以对材料进行不同物理环境下的电阻、磁阻、交流磁化率和霍尔系数的原位测量。这一先进的综合测量系统在该项目研究中得到了成功的运用,其性能优势得到了体现。这对于以后继续深入开展极端条件下的新型超导材料和新奇量子态的研究都会发挥作用。这套具有超高压下原位磁阻测量、霍尔测量和交流磁化率测量功能的综合测试系统在国际该领域的科研设备中具有自己的特色。