关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

基因芯片技术简介和应用展望(一)

2020.7.27

基因芯片(Gene Chip)通常指DNA芯片,其基本原理是将指大量寡核苷酸分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强弱进而判断样品中靶分子的数量。基因芯片的概念现已泛化到生物芯片(biochip)、微阵列(Microarray)、DNA芯片(DNA chip),甚至蛋白芯片。基因芯片集成了探针固相原位合成技术、照相平板印刷技术、高分子合成技术、精密控制技术和激光共聚焦显微技术,使得合成、固定高密度的数以万计的探针分子以及对杂交信号进行实时、灵敏、准确的检测分析变得切实可行。基因芯片技术在分子生物学研究领域、医学临床检验领域、生物制药领域和环境医学领域显示出了强大的生命力,其中关键就是基因芯片具有微型化、集约化和标准化的特点,从而有可能实现“将整个实验室缩微到一片芯片上”的愿望。基因芯片在国内外已形成研究与开发的热潮,许多科学家和企业家将基因芯片同当年的PCR相提并论,认为它将带来巨大的技术、社会和经济效益,正如电子管电路向晶体管电路和集成电路发展是所经历的那样,核酸杂交技术的集成化也已经和正在使分子生物学技术发生着一场革命。

基因芯片的种类
   
基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,下面主要介绍四类基因芯片。

一、光引导原位合成技术生产寡聚核苷酸微阵列
   
开发并掌握这一技术的是Affymetrix公司,Affymetrix采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。

原位合成法主要为光引导聚合技术(Light-directed synthesis),它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子。光引导聚合技术是照相平板印刷技术(photolithography)与传统的核酸、多肽固相合成技术相结合的产物。半导体技术中曾使用照相平板技术法在半导体硅片上制作微型电子线路。固相合成技术是当前多肽、核酸人工合成中普遍使用的方法,技术成熟且已实现自动化。二者的结合为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。
   
Affymetrix公司已有诊断用基因芯片成品上市,根据用途可以分为三大类,分别为基因表达芯片、基因多态性分析芯片和疾病诊断芯片,基因表达分析芯片和基因多态性分析芯片主要用于研究机构和生物制药公司,可以用来寻找新基因、基因测序、疾病基因研究、基因制药研究、新药筛选等许多领域,Affymetrix公司主要生产通用寡聚核苷酸芯片;疾病诊断芯片则主要用于医学临床诊断,包括各种遗传病和肿瘤等,目前Affymetrix公司生产三种商品化诊断芯片,分别为p53基因突变诊断芯片、艾滋病病毒基因基因突变诊断芯片和细胞色素P450基因突变诊断芯片。

二、微电子芯片
   
Nanogen开发了多位点电控阵列并含独立可寻址检测区域的微电子基因芯片,其基质全部以硅、锗与基础的半导体材料,在其上构建25-400个微铂电极位点,各位点可由计算机独立或组合控制。无论在芯片制造或成品芯片检测,均可通过相似微电极的电场变化来使核酸结合,引入“电子严谨度”参数使芯片检测通过靶、探针序列特征和使用者要求来控制杂交过程中的严格性。这种微电子基因芯片具有以下优点:
   
1.电场定位过程能选择性地转运带电荷DNA分子,通过每个微电极位点的电场正负、强弱变化,能准确有效地随意调控芯片表面的核酸,既可将核酸结合在微电极位点上,也可以使核酸转运出来。
   
2.通过电场变化能加快DNA杂交速率,通过导入正电场后,可以大大加快待测核酸同已知探针的结合速率,减少了杂交反应时间,同普通的“被动”杂交反应的几小时相比,这种“主动”杂交反应仅仅几秒钟就可完成。另外电场变化又可有效地去除未结合游离分子,减少未结合荧光信号干扰。
   
3.通过电子严谨度可有效地控制杂交过程中的错配度,杂交错配的程度,对不同的要求上要给以不同的电场就可以符合不同的电子严谨度,这对核酸杂交严格度可以非常灵活地控制,这可以非常准确地进行SNP检测。

三、微量点样技术
目前大部分生产基因芯片的公司都是使用这一方法,采用了先进更加微量的点样技术,可以点更加微量的探针。这种方法生产的芯片上探针不受探针分子大小种类的限制,能够灵活机动地根据使用者的要求制作出符合目的的芯片。由于同时有生产和检测仪器出售,使拥护能够根据自己的需要制作相应的芯片,并且价格较低,所以近期内国内将会有一定的市场。生产这种设备的公司有很多,象美国的Genomicsolutions公司、英国的BioRobotics公司、美国的Cartesian公司和加拿大的Engineering公司等。

对于微量点样技术生产的基因芯片来说从仪器组成上可以分为点样仪器、杂交装置、检测仪器和分析仪器,点样仪器是否先进决定芯片上的探针密度和结合牢固程度,虽然芯片的探针密度是一个很重要的指标,达到极高密度的探针阵列是许多芯片生产公司梦寐以求的目标,但是具体的点样密度根据使用者的目的来决定,而且还要考虑到随后的杂交和检测过程。衡量点样装置有几个比较重要的指标,如仪器整体设计、功能多样性、芯片基质多样性、点样稳定性、点样速度、点样密度等等。

点阵器一般采用实心或空心点样针,点样方式有非接触喷点(inkjet printing)和接触点样(Contact
printing)两种方式。目前,有两种非接触喷点技术用于DNA点样,一种是用压电晶体将液体从孔中喷出的压电技术(piezoelectric technology),喷滴大小一般为50-500pl;另一种为注射器螺线管技术(syringe-solenoid
technology),这种技术是通过高分辨率注射器泵和微螺线管阀门有机结合起来精确控制滴液的。

检测仪器也是一个重要的限制条件,如果检测仪器的分辨率不高,那么即使点样仪器制造出了很高密度的芯片也没有用,对高密度的芯片通常使用激光共聚焦显微镜和高性能的冷却CCD,二者各有利弊,须根据要求综合衡量。
显色和分析测定方法主要为荧光法,目前正在发展的方法有质谱法、化学发光法、光导纤维法等。以荧光法为例,当前主要的检测手段是激光共聚焦显微扫描技术和高性能的冷却CCD,以便于对高密度探针阵列每个位点的荧光强度进行定量分析。因为探针与样品完全正常配对时所产生的荧光信号强度是具有单个或两个错配碱基探针的5-35倍,所以对荧光信号强度精确测定是实现检测特异性的基础。

分析仪器从硬件上说只是一部高性能的计算机,但其中最重要的是分析软件,如果只是进行简单的检测或科学实验,待测样品所要分析的基因很少很简单,采用直观的观察就可以得出结论,但对于大量的基因分析或是临床检验人员使用就需要有全面智能化的分析软件辅助,这样还需要考虑到软件的升级。

推荐
热点排行
一周推荐
关闭