关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

合成生物学:正在"起飞"的技术

2010.6.01

  文特尔:聪明的"园丁"

  生物技术有时更像人与自然交流的一种传统方式:园艺。园艺技术主要是通过修剪与嫁接。以基因为"修剪嫁接"对象的生物技术却遇到了这样的拦路虎:生命体有自己的一套方式,而不管人类"主人"有什么打算。生物技术中的"修剪"包括去除一些虽对野生生命有好处但却消耗能量,不利完成指定任务的特性,生物技术中的"嫁接"是添加进从别处转移来的具有某种特性的基因。

  文特尔还是希望能回到他最初的设想,通过完整而合理的"修剪嫁接",创造一个最小的基因组。这个雄心勃勃的设想将成为生物科学的一个新的里程碑,生物技术将从逐个基因操控,发展为一个以"批量生产"方式改变生命的合成生物学产业。

  为此,文特尔就像一个聪明的园丁一样,在过去的十年里锲而不舍地向这个方向努力。显然,他为细菌互换"零部件"的想法十分成功。细菌族中的每个物种,或一群物种,都有一个由数百个或数千个基因构成的基因子集,这个基因子集来自于包含了无数个基因的基因库。因此对虽有亲缘关系但有很大不同的细菌进行比较,可以揭示一种与最小基因组概念类似的"核心能力",以寻求制造出有实用价值的细菌(比如批量生产某种特效药物)的途径。

  文特尔的目光并不仅仅放在细菌上,除了寻求最小基因组之外,他还瞄准了单细胞的藻类。从单细胞的细菌跨越到单细胞的藻类,听起来是很短的一步。但在生物分类上,藻类与细菌是完全不同的,这一类生物包括动物、植物、真菌及藻类。

  藻类的有趣还体现在其他方面。包括文特尔在内的许多人都想用藻类来制造生物燃料。它们可将大气中和发电站排气中的二氧化碳,通过光合作用转化为石油或柴油。目前几乎所有用来生产生物燃料的微生物都是通过发酵作用来实现这一目的的,利用藻类就可以省掉一些中间步骤。

  文特尔的目的是要实现对细菌基因组的全面控制,将研究对象扩大到各种不同的微生物。他麾下的合成基因组公司已和Exxon签约,将由其斥资6亿美元,从藻类中制作生物燃料。文特尔表示要努力"建立完整的藻类基因组,这样我们就可以改变藻类生长中50%-60%的参数,藉以形成各种超多产的有机体。"到目前为止,通过对众多海水微生物DNA的分析,文特尔已拥有约4千万种基因的库存,其中大部分源自于藻类。他说,这些基因将是一笔可观的资源,足以使捕获的藻类产生有用的化学物质。

  未来生命科学展望

  然而,科学家的所有这些设想和努力,都要取决于一个因素:合成DNA价格的持续下降。这与戈登·摩尔关于电脑发展的著名定律很有些相似,过去十年里DNA测序和DNA修改的价格都在直线下跌。前者意味着世界上的DNA数据库里已有了生命之树各部分的大量基因数据,后者意味着这些基因的剪切粘贴都在变得越来越便捷容易。

  合成生物学作为一种正在"起飞"的技术,不仅是件好事,而且于人类至关重要。创造一种新的实用生物体的过程将会是一种不断失败不断尝试的曲折过程,人工选择的进化方式很可能会像自然选择一样,浪费大量的资源。但很多人对基因合成的繁殖方式有所担忧,君不见电脑黑客制造的电脑"病毒"给人们带来多大的烦恼,他们担心,未来的黑客们也许会利用合成生物学,制造出真正的病毒。

  无疑,这是一种风险。但几乎所有技术都一样,既可用来行善,也可用来作恶。用来制造病原体的技术也可用来制造疫苗。既能行善,且能带来利益的事,总是比邪恶的欲望更能吸引更多的人,如此说法并非盲目乐观。利用合成生物学,人们可以发明新的作物、新的燃料、新的疾病治疗方法和新的药物。当然,也可能会有人利用合成生物学技术做一些疯狂的事情。

  在科幻小说迈克尔·克莱顿的《侏罗纪公园》中,展现了恐龙复活的惊人场景,但实际上,没有任何办法利用存活下来的DNA直接让生命复活。但是如今人类已经有了成功制造出基因组的能力,加上对复杂生物体有了更为深刻的理解,相信总有一天,合成生物学将能制造出做出类似恐龙的生物。

  不过,虽然恐龙没有留下可用的DNA,其他更晚灭绝的生物却慷慨地给予了我们机会,想像一下,将合成生物学用于目前已完成测序的尼安德特人的基因组,再与现代人类的DNA相比较一下,看看有什么根本的不同,这是多么令人兴奋的事情。如果能够创造出一个尼安德特人出来,再亲口问他一些问题,那将多有意思!不过,如果这种做法会引起伦理道德上的争议的话,不妨来只远古猛犸象试试怎么样?

  本版文章除署名外,均由方陵生、何积惠编译

推荐
关闭