关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

解析先进半导体制程未来可能面临的挑战及解决办法-2

2020.10.26

  随着线宽的微缩,对于黄光微影与蚀刻的挑战当然不在话下,曝光显影的线宽一致性(Uniformity),光阻材料(Photo Resist,PR)的选择,都将会影响到后续蚀刻的结果。蚀刻后导线的线边缘粗糙度(Line Edge Roughness,LER),与导线蚀刻的临界尺寸(Critical Dimension,CD)与其整片晶圆一致性等最基本的要求,都是不小的挑战。

  后段制程另外一个主要的挑战则是前文所提到铜离子扩散。目前阻挡层的主要材料是氮化钽(TaN),并在阻挡层之上再沉积衬垫层,作为铜与阻挡层之间的黏着层(Adhesion Layer),一般来说是使用钽(Ta)。

  然而,钽沉积的覆盖均匀性不佳,容易造成导线沟槽的堵塞,20奈米节点以前因导线的深宽比(Aspect Ratio,AR)较低而尚可接受,但随着制程的演进,导线线宽缩小导致深宽比越来越高,钽沉积的不均匀所造成的缩口将会被严重突显出来,后端导致铜电镀出现困难,容易产生孔洞(Void)现象,在可靠度测试(Reliability Test)时容易失败。另外,钽的不均匀性容易造成沟槽填充材料大部份是钽而不是铜,由于钽金属导线的阻值将会大幅上升,抵销原先铜导线所带来的好处,其示意如图4所示。

  前文提到衬垫层必需具有低电阻率、良好的覆盖均匀性、是铜的良好黏着层等重要特性,钽在20奈米节点以下已无法符合制程的需求,找出新的材料已经刻不容缓。

  钴(Cobalt,Co)与钌(Ruthenium,Ru)是目前最被看好的候选材料。钴是相当不错的衬垫层,具有比钽更低的电阻率,对铜而言是亦是不错的黏着层,且在电镀铜时具有连续性,不容易造成孔洞现象出现。但钴衬垫层也有其不理想之处,主要是因为铜的腐蚀电位高于钴,因此在铜、钴的接触面上,容易造成钴的腐蚀,此现象称为电流腐蚀(Galvanic Corrosion),亦称为伽凡尼腐蚀。

  解决电流腐蚀的问题必须从化学机械研磨(Chemical Mechanical Polish,CMP)的与后清洗(Post CMP Clean)着手,使用特殊的化学原料改变铜与钴之间的腐蚀电位,以降低或消除腐蚀现象。目前预估钴衬垫层将可延伸到10奈米制程节点。

  接着在7奈米,阻挡层与衬垫层的候选材料将有可能是钌,铜可以直接在钌上电镀,并有效阻挡铜离子对介电层的扩散,如图5所示。  

  不过,钌跟钴在与铜接触时,一样都会有电流腐蚀问题,只是钌的情况与钴恰巧相反,钌的腐蚀电位高于铜,因此铜金属将会被腐蚀。另外,钌的硬度相当高,且化学性质稳定,不容易与其它化学成份反应,只有使用类似像过碘酸钾(KIO4)这种强氧化剂(过去是使用双氧水作为氧化剂)才可使其氧化,以提高研磨率(大约100∼150A/min)。钌的物理与化学特性,为化学机械研磨制程带来不小的挑战,目前业界还在寻找适当的解决办法。

  需求规模恐不足先进制程面临经济因素考验

  台积电是全球晶圆代工的龙头,它的动向对于半导体产业发展都具有重大的影响力,每一季财务发表会的声明皆为半导体产业发展的风向球,故分析其营收趋势,可约略窥探与预测未来全球IC产业的发展,图6为台积电各制程节点的每季营收趋势图。

  由图6可看出,目前主要营收贡献来自28奈米。过去40奈米营收用了13季超越65奈米,28奈米因搭上了行动装置的热潮,只用了6季便超越40奈米。先进制程如20/16奈米制程从推出至今已达7季,虽维持高档,但仍未超越28奈米。从营收的另一个角度观察,价格乘上销售数量等于营收,20/16奈米制程的代工价格必定高于28奈米制程,但营收却未高过于28奈米,可依此推论终端客户对20/16奈米制程的需求与投片量相较于28奈米制程应该是低上不少。且在2016第一季时,20/16奈米制程的营收较上季下滑,28奈米制程却较上季上升,再加上台积电在法说会上提到28奈米制程的产能利用率未来几个季度依旧维持高档,这些迹象显示出终端客户对先进制程需求的态度保守。

  过去智慧型手机与平板电脑带动半导体先进制程的发展与高成长,但现在行动通信装置的热潮已明显消退,IC产业链相关厂商亦希望找出下一个杀手级应用,继续带动半导体产业发展。

  目前业界一致认为,物联网(Internet of Things,IoT)为最佳候选人之一。物联网主要构架是将会使用大量微控制器(Micro Controller Unit,MCU)与微机电感测器(MEMS Sensor),以及微型Wi-Fi芯片作为数十亿计的「物」的控制与连接元件,这些「物」的信号将会传送到背后数以千万计,具有高运算能力的服务器进行大数据(Big Data)分析,以提供使用者及时且有用的信息。

  由此可知,与「物」相关的芯片数量应该会相当惊人,但其所需的半导体制程技术应是成熟型甚至是28奈米制程即可应付;而最需要先进制程技术的服务器中央处理器芯片,相较于「物」的数量应会低上不少,对相关IC制造厂商的贡献营收是否仍可继续支撑制程开发与设备的投资,仍是未知数。市场给予IC制造厂商的压力与挑战,并不亚于前文所提到的制程挑战。

  技术挑战时时存在产业生态转变才是真考验

  随着制程技术的演进,遇到的挑战与困难只会多不会少,并且制程节点已进入到10奈米以下,快要接触到物理极限,所以除了线宽微缩外,改变元件结构或是使用新的材料等选项,已是一条不可不走的路。

  像前段制程的元件部份,除了线宽微缩的挑战之外,其他如功耗的将低或是运算能力的增进,亦是等待解决的课题之一。FinFET将过去的平面式结构转为立体式结构,增加对闸极的控制能力,未来更有可能转为全包复式的闸极以降低漏电流。

  另外,改变信道材料,由过去的硅改为SiGe或是III-V族等信道材料,为的都是增加电子或是电洞的迁移率。但晶圆制造业者要如何把异质材料整合至硅基板上,又兼顾可靠度,将是避无可避的挑战。

  后段金属导线在材料上的选择亦遇到阻挡层与衬垫层沉积的挑战,间接导致电镀铜的困难度增加,过去是使用氮化钽/钽作为阻挡层与衬垫层,但随着金属导线临介尺寸的缩小,钽/氮化钽已渐渐地不符合制程的要求。钴已在20奈米制程部份取代了钽,作为衬垫层的主要材料,未来钌更会在7奈米制程继续接棒。但因钴、钌与铜电化学与材料的特性,增加了化学机械研磨与后清洗的挑战。

  回顾过去的历史,技术上的难关总有办法克服,但接下来半导体产业还要面临经济上的考验。未来的制程节点发展难度将会越来越高,相对的,制程开发与设备的投资金额也将会越来越庞大,最终必定将会反应到晶圆的销售价格上。

  上一波行动装置如智慧型手机与平板装置的热卖,带起了28奈米制程营收的高峰,但未来先进制程可能不会有类似的机遇。在行动通信装置的退烧,以及物联网应用的普及带动下,成熟型制程如微机电与28奈米将仍可持续发光发热,但高成本的先进制程未来在市场的接受度上,仍有不少的质疑声浪与挑战,未来的发展有待持续观察。


推荐
关闭