关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

热失控实验的过程与情况(二)

2020.9.29

02

单个模组内的热失控

基本过程 

之前冯博做了很多的工作,也对这个过程建立了比较详细的模型和机理的分析,这里只是进一步描述一些现象。DUT 模组内各个电芯热失控的规律,我重新做了整理:黄色线是模组相邻被激发电芯的温度,灰色线是没有热失控前的温度,蓝色的线是电芯相继出现热失控的间隔时间。也就是说,实际在热失控过程中一旦开阀以后,电池表面温度在 400°C 到 550°C 之间,平均温度 495°C;电芯表面温度在 100°C 到 200°C 之间,平均温度 144°C,会发生热失控。这里的模组里面每个电芯之间是加了隔热材料的,如下所示,所以整体的结果是在 60 分钟以后传递到第二个模组

e3c3c113427e8bb2191bf456ba5f8151.png

备注:这个表面温度其实有些不准确,后面会分析的

03

相邻模组的热失控传播

热失控

上方的第二个模组是在 66 分钟以后出现连锁的热失控的情况,第三个模组 68 分钟以后出现问题,而这一次在高温烘烤下,模组的热失控的过程都在 10 分钟完成了。如下图所示,在一定条件下整个热失控的过程是无序的,下方喷阀火焰直接对上方的水冷板进行了烘烤备注:我们可以看到环境温度其实对模组内电芯热失控有影响,而直接的火焰和烟气如果处理不善,哪怕有水冷板最终的结果也会使得电芯热失控

f83cb51f5f54ab70e36efe4c6664ea1e.png

三个模组内的相邻触发事件差异

我们可以看到这个温度点差异是有的,特别是有以下的一些考虑:

相邻模组:相邻模组的速度,由于有模组间直接相连的母线排连接,使得这一组的电芯表面温度很低就直接开阀了,甚至温度还没到我们预期的温度

双层模组设计即使通过支架和水冷板隔开,如果喷阀过程没有考虑过隔热设计,这一个个电芯开阀的温度就直接对着金属支撑结构和水冷板喷火,最终的结果是吸收大量的热量,并且很均匀,使得表面温度不高的情况下,也会很早开阀

三个模组的传播过程概览

7de08a61b762a297b36a7f2d28b480a9.jpg

这个是抓出来的温度突变点,也就是电芯的表面热失控之前的那一刻的温度情况。总的来说,NCM111 的耐温性还是很好的,523 要打折,811 则更要打折了。所以实际上,我们如果想用模组的温度传感器抓住这个温度的变化,有一些困难,设计的 NTC 在这个过程中由于烟气的原因,要么响应不及时,要么那时候已经损坏了,要仔细考虑 NTC 在这种破坏性的条件下怎么处理,我觉得可能的办法,可能是建立一些类似感温线这样的特殊选型的 NTC 来应对这个特殊温度的采集,这个之前我也提过。

三个模组内的热失控温度点

a2a64f1adaf60f1c924824687b388e3d.png

小结:我们在这类 37Ah(164Wh/kg 且容量有限,并且是 1P 的使用)的经典的设计中通过合理的布局,是完全可以控制住整个热失控蔓延的过程,但是我们发展的方向是追求能量密度,追求体积利用率,这就带来我们会失去足够的间隙,失去足够的缓冲空间,这里还是一个平衡,如何在一个范围内使得电芯不蔓延。


推荐
关闭