关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

分子生物学课程教学讲义(五)

2021.4.28

1. DNA复制的起始
  大肠杆菌中的复制起始位点是Ori C,全长245Bp,该序列在所有细菌复制起始位点中都是保守的。
DNA复制起始中的主要步骤
a. 大约20个左右的DnaA蛋白首先与OriC中的4个9碱基重复区相结合;
b. 识别并使3个13碱基串联重复区DNA形成开环结构;
c. DnaB蛋白在DnaC的帮助下与未解链序列结合。每六个DnaB蛋白形成一组并与一条DNA母链结合,可在不同方向同时起始DNA的复制。当细胞中存在足够的SSB和DNA gyrase时,DnaB的解链效率非常高。
整个DNA复制过程中,只有复制起始受细胞周期的严格调控。
"Once in each cell cycle。"
DNA甲基化与DNA复制起始密切相关。OriC中有11个GATC回文结构(一般说来,256bp才应有一个GATC重复)。DNA子链被合成后,母链立即被甲基化(称为hemimethylated)。此时,oriC与细胞原生质膜相结合。只有当oriC被从膜上释放出来,子链被Dam甲基化后,才能有效地与DnaA蛋白结合,起始新一轮的DNA复制。复制起始可能还受ATP水解过程调控,因为DnaA只有与ATP相结合时才能与oriC区DNA相结合。


2. DNA子链的延伸
  主要包括两个不同但相互有联系的事件,即前导链和滞后链的合成。由DNA helicase解开双螺旋,由拓朴异构酶消除DNA链上的扭曲力,SSB结合使DNA单链稳定。
  前导链的合成:由DnaG(primase)在复制起始位点附近合成一个10-60 nt的RNA引物,然后由polII把dNTP加到该引物上。
  滞后链的合成:产生Okazaki fragments,消除RNA引物并由DNA pol I补上这一小段DNA序列,由DNA Ligase把两个片段相连。


3. DNA链的终止
  当子链延伸达到terminus region(ter,带有多个20bp序列)时,DNA复制就终止了。Ter有点像一个陷井(trap),使复制叉只能进入,不能出来。Ter的功能主要是由Ter-Tus复合物(ter utilization substance)来完成的。


4. 真核细胞DNA的复制比大肠杆菌更复杂
  真核生物的origin of replication被称为ARS-autonomously replicating sequences或者被称为replicators。Yeast replicators长约150dp,有多个保守重复区,共有约500个replicators分布于酵母的17条染色体中。

㈡、DNA的损伤修复
1. 错配修复(mismatch Repair)
错配修复对DNA复制忠实性的贡献力达102-103,DNA子链中的错配几乎完全都被修正,充分反映了母链的重要性。


2. 碱基切除修复(Base-Excision Repair)
DNA gylcosylases能特异性识别常见的DNA损伤(如胞嘧啶或腺嘌呤去氨酰化产物)并将受损害碱基切除。去掉碱基后的核苷酸被称为AP位点(apurinic or apyrimidinic)。细胞中最常见的Uracil Glycosylase就能特异性切除细胞中的去氨基胞嘧啶。


3. 核苷酸切除修复(nucleotide-excision repair)
当DNA链上相应位置的核苷酸发生损伤,导致双链之间无法形成氢键,由核苷酸切除修复系统负责进行修复。


4.DNA的直接修复(Direct repair)

㈢、DNA的转座
  DNA的转座,或称移位(transposition),是由可移位因子(transposable element)介导的遗传物质重排现象。已经发现"转座"这一命名并不十分准确,因为在转座过程中,可移位因子的一个拷贝常常留在原来位置上,在新位点上出现的仅仅是拷贝。因此,转座有别于同源重组,它依赖于DNA的复制。


1. 转座子的分类和结构特征
a. 简单转座子
转座子(transposon,Tn)是存在于染色体DNA上可自主复制和移位的基本单位。
最简单的转座子不含有任何宿主基因而常被称为插入序列(insertion sequence,IS),它们是细菌染色体或质粒DNA的正常组成部分。一个细菌细胞常带有少于10个IS序列。转座子常常被定位到特定的基因中,造成该基因突变。IS序列都是可以独立存在的单元,带有介导自身移动的蛋白。


b.复合式转座子(composite transposon)是一类带有某些抗药性基因(或其他宿主基因)的转座子,其两翼往往是两个相同或高度同源的IS序列,表明IS序列插入到某个功能基因两端时就可能产生复合转座子。一旦形成复合转座子,IS序列就不能再单独移动,因为它们的功能被修饰了,只能作为复合体移动。


2、转座作用的机制
  转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的(3-12bp)、被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。不同转座子的靶序列长度不同,但对于一个特定的转座子来说,它所复制的靶序列长度都是一样的,如IS1两翼总有9个碱基对的靶序列,而Tn3两端总有5bp的靶序列。


  转座可被分为复制性和非复制性两大类。在复制性转座中,所移动和转位的是原转座子的拷贝。转座酶(transposase)和解离酶(resolvase)分别作用于原始转座子和复制转座子。TnA类转座主要是这种形式。在非复制性转座中,原始转座子作为一个可移动的实体直接被移位,IS序列、Mu及Tn5等都以这种方式进行转座。


3.转座作用的遗传学效应
① 转座引起插入突变;② 转座产生新的基因;③ 转座产生的染色体畸变;④ 转座引起的生物进化.

六、RNA代谢
  除了某些RNA病毒之外,所有RNA分子都来自于DNA。基因组DNA通过一个被称为转录的过程把贮存在双链DNA分子中的遗传信息转换到与模板DNA链相互补的RNA单链上。
mRNA,编码了一个或多个蛋白质序列;tRNA,把mRNA上的遗传信息变为多肽中的氨基酸信息;rRNA,是合成蛋白质的工厂核糖体中的主要成份。


1. 依赖于DNA的RNA合成
从DNA合成反应的化学本质、极性和模板的使用这三方面来说,转录与复制是相同的。但是,也存在三个主要不同点:
A. 转录中不需要RNA引物;
B.转录反应一般只用一小段DNA做模板;
C.在转录区,一般都只有一条DNA链可以作为模板。
2.RNA合成的终止
一旦RNA聚合酶启动了基因转录,它就会沿着模板5'→3'方向不停地移动,合成RNA链,直到遇到终止信号时才释放新生的RNA链,并与模板DNA脱离。


  研究RNA链终止时遇到最常见的问题是3'端核苷酸的定位,因为活细胞内部根据终止信号正确终止的RNA与一个经过剪接的RNA在3'端没有两样,都是-OH基团。模板DNA上都有终止转录的特殊信号--终止子,每个基因或操纵子都有一个启动子,一个终止子。在新生RNA中出现发卡式结构会导致RNA聚合酶的暂停,破坏RNA-DNA杂合链5'端的正常结构。寡聚U的存在使杂合链的3'端部分出现不稳定的rU·dA区域。
a. 依赖于ρ因子的终止
ρ因子是一个相对分子质量为2.0×105的六聚体蛋白,它能水解各种核苷三磷酸,实际上是一种NTP酶。由于催化了NTP的水解,ρ因子能促使新生的RNA链从三元转录复合物中解离出来,从而终止转录。
有人认为,在RNA合成起始以后,ρ因子即附着在新生的RNA链上,靠ATP水解产生的能量,沿着5'→3'方向朝RNA聚合酶移动,到达RNA的3'-OH端后取代了暂停在终止位点上的RNA聚合酶,并从模板和酶上释放RNA,完成转录过程。终止过程需要消耗能量,所以,ρ因子具有终止转录和核苷三磷酸酶两种功能。
b、不依赖于ρ 因子的终止
若终止点上游存在一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发卡式结构;在终止点前面有一段由4-8个A组成的序列,导致转录产物的3‘端为寡聚U。这两种结构特征的存在同样决定了转录的终止。
在新生RNA中出现发卡式结构会导致RNA聚合酶的暂停,破坏RNA-DNA杂合链5'端的正常结构。寡聚U的存在使杂合链的3'端部分出现不稳定的rU·dA区域。


3.RNA聚合酶II及转录因子在启动子上的装配
TFⅡH还参与DNA的损伤修复。当RNA polⅡ转录过程中碰到受损伤的核苷酸时,TFⅡH能及时启动核苷酸切除修复系统,将损伤修复。
Actinomycin D和Acridine阻断RNA链的延伸


4.RNA的加工成熟
  所以,RNA加工成熟主要包括:5’加帽子结构;3’加多聚A;切除内含子 。
在Group I内含子切除体系中,鸟苷或鸟苷酸的3'-OH 作为亲核基团向Intron 5'的磷酸二酯键发起进攻。
Group II内含子切除体系
核内mRNA原始转录产物的剪辑方式可能是最常见的。在这一模式中,RNA的剪辑需要特异性RNA-protein-复合物small nuclear rebonucleoproteins(snRNP)和small nuclear RNAs(snRNAs)。已经发现至少有5种snRNAs--U1,U2,U4,U5,U6。

第五讲 分子生物学研究法
一、 重组DNA技术发展史上的重大事件
1.40年代确定了遗传信息的携带者,即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;
2.50年代提示了DNA分子的双螺旋结构模型和半 保留复制机制,解决了基因的自我复制和世代交替问题;
3.50年代末至60年代,相继提出了"中心法则"和操纵子学说,成功地破译了遗传密码,充分认识了遗传信息的流动和表达。
年份 事 件
1869 F Miescher首次从莱茵河鲑鱼精子中分离DNA。
1944 O.T. Avery证实DNA是遗传物质。
1952 A.D. Hershey和M.Chase再次证实和噬菌体的遗传物质是DNA。
1953 J.D.Watson和F.H.C.Crick提出DNA分子结构的双螺旋模型。M.Wilkins用X-射线衍射法证实了这一结构。
1957 A.Kornberg从大肠杆菌中发现了DNA聚合酶I。
1958 M. Meselson和F. W. Stahl提出了DNA的半保留复制模型。
1959-1960 S. Ochoa发现RNA聚合酶和信使RNA,并证明mRNA决定了蛋白质分子中的氨基酸序列。
1961 Nirenberg破译了第一相遗传密码;F. Jacob和J. Monod提出了调节基因表达的操纵子模型。
1964 C. Yanofsky和S. Brenner等人证明,多肽链上的氨基酸序列与该基因中的核苷酸序列存在着共线性关系。
1965 S. W. Holley完成了酵母丙氨酸tRNA的全序列测定;科学家证明细菌的抗药性通常由"质粒"DNA所决定。
1966 M.W.Nirenberg,S.Ochoa、H.G.Khorana、F.H.C.Crick等人破译了全部遗传密码。
1970 H.O.Smith,K.W.Wilcox和T.J.Kelley分离了第一种限制性核酸内切酶。H.M.Temin和D.Baltimore从RNA肿瘤病毒中发现反转录酶。
1972-1973 H.Boyer,P.Berg等人发展了DNA重组技术,于72年获得第一个重组DNA分子,73年完成第一例细菌基因克隆。
1975-1977 F.Sanger与A.Maxam、W.Gilbert等人发明了DNA序列测定技术。1977年完成了全长5387bp的噬菌体φ174基因组测定。
1978 首次在大肠杆菌中生产由人工合成基因表达的人脑激素和人胰岛素。
1980 美国联邦最高法院裁定微生物基因工程可以ZL化。
1981 R. D. Palmiter和R. L. Brinster获得转基因小鼠;A. C. Spradling和G. M. Rubin得到转基因果蝇。
1982 美、英批准使用第一例基因工程药物--胰岛素;Sanger等人完成了入噬菌体48,502bp全序列测定。
1983 获得第一例转基因植物。
1984 斯坦福大学获得关于重组DNA的ZL。
1986 GMO首次在环境中释放。
1988 J. D. Watson出任"人类基因组计划"首席科学家。
1989 DuPont公司获得转肿瘤基因小氧--"Oncomouse"。
1992 欧共体35个实验室联合完成酵母第三染色体全序列测定(315kb)
1994 第一批基因工程西红柿在美国上市。
1996 完成了酵母基因组(1.25×107bp)全序列测定。
1997 英国爱丁堡罗斯林研究所获得克隆羊。
基因工程中常见的名词:
遗传工程--genetic engineering,基因操作--gone manipulation,基因克隆--gone cloning,
重组DNA技术--recombinant DNA technology,分子克隆--molecular cloning。
基因工程的主要内容或步骤:
1. 从生物有机体基因组中,分离出带有目的基因的DNA片段。
2. 将带有目的基因的外源DNA片段连接到能够自我复制的并具有选择记号的载体分子上,形成重组DNA分子。
3. 将重组DNA分子转移到适当的受体细胞(亦称寄主细胞)并与之一起增殖。
4. 从大量的细胞繁殖群体中,筛选出获得了重组DNA分子的受体细胞,并筛选出已经得到扩增的目的基因。
5. 将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。

二、 基因操作的主要技术原理
1. 核酸的凝胶电泳(Agarose & Polyacrylamide)
  将某种分子放到特定的电场中,它就会以一定的速度向适当的电极移动。某物质在电场作用下的迁移速度叫作电泳的速率,它与电场强度成正比,与该分子所携带的净电荷数成正比,而与分子的磨擦系数成反比(分子大小、极性、介质的粘度系数等)。
在生理条件下,核酸分子中的磷酸基团是离子化的,所以,DNA和RNA实际上呈多聚阴离子状态(Polyanions)。将DNA、RNA放到电场中,它就会由负极→正极移动。
在凝胶电泳中,一般加入溴化乙锭(EB)--ethidium bromide染色,此时,核酸分子在紫外光下发出荧光,肉眼能看到约50ng DNA所形成的条带。
DNA的脉冲电泳技术 :PFGE-Pulse-field gel electrophoresis


2. 核酸的分子杂交技术
  在大多数核酸杂交反应中,经过凝胶电泳 分离的DNA或RNA分子,都是在杂交之前,通过毛细管作用或电导作用按其在凝胶中的位置原封不动地"吸印" 转移到滤膜上的。常用的滤膜有尼龙滤膜、硝酸纤维素滤膜,叠氮苯氧甲基纤维素滤纸(DBM)和二乙氨基乙基纤维素滤膜(DEAE)等。
核酸分子杂交实验包括如下两个步骤:
  将核酸样品转移到固体支持物滤膜上,这个过程特称为核酸印迹(nucleic acid blotting)转移,主要有电泳凝胶核酸印迹法、斑点和狭线印迹法(dot and slot blotting)、菌落和噬菌斑印迹法(colony and plaque blotting);
  将具有核酸印迹的滤膜同带有放射性标记或其它标记的DNA或RNA探针进行杂交。所以有时也称这类核酸杂交为印迹杂交。


3. 细菌的转化
  所谓细菌转化,是指一种细菌菌株由于捕获了来自另一种细菌菌株的DNA,而导致性状特征发生遗传改变的生命过程。这种提供转化DNA的菌株叫做供体菌株,而接受转化DNA的寄主菌株则称做受体菌株。大肠杆菌是最广泛使用的实验菌株。在加入转化DNA之前,必须预先用CaCl2处理大肠杆菌细胞,使之呈感受态(Competent Cells)。Mg2+对维持外源DNA的稳定性起重要作用,质粒DNA中的抗生素是筛选标记。


  对绝大多数hsdR-,hsdM-突变体菌株(k12),每ug DNA可得107-108个转化子。


推荐
关闭