关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

超快锂离子传导能力的(LiBH4)x•AB复合氢化物固态电解质

2020.1.22

  现代社会对电池的能量密度、安全性和稳定性提出了更为严苛的要求。用固态电解质替代有机电解液,发展先进的全固态锂离子电池被认为是提升电池能量密度、解决电池安全性的必由之路。LiBH4基固态电解质由于质量轻、晶界阻抗低、离子选择性好、对Li稳定性好以及优异的机械性能,近年来引起了人们的广泛关注。尽管LiBH4在高温下(>110 ºC)展现出高于10-3 S cm-1的离子电导率,但其室温时的离子电导率仅为10-8 S cm-1,大大限制了其在全固态电池中的实际应用。

  近日,浙江大学潘洪革教授团队的刘永锋教授课题组通过机械球磨的手段,将NH3·BH3(AB)分子引入到LiBH4晶格中,合成了(LiBH4)2•AB和LiBH4•AB复合氢化物,成功实现了室温条件下LiBH4基固体电解质的超快锂离子传导性能。结果表明,在LiBH4晶格中引入第二相AB分子,可以显著增大晶胞体积,并引入大量Li空位,但不会破坏[BH4]-基团的排列。制备得到的(LiBH4)x •AB复合氢化物具有优异的锂离子传导性能,离子迁移数达到0.999。在18 ºC时,LiBH4•AB离子电导率可达2×10-4 S cm-1,30 ºC时高达1×10-3 S cm-1。在0.1和0.2 mA cm-2电流密度下恒电流充放电,Li/(LiBH4)x •AB/Li对称电池40 h循环过程中没有明显的电压波动,表现出良好的循环稳定性能。LiBH4•AB的极限电流密度甚至可达到3.0 mA cm-2。分子动力学(AIMD)模拟可知,在(LiBH4)2•AB结构中,Li+的扩散是以ac平面2D扩散为主、b方向1D扩散为辅的3D扩散机制;而在LiBH4•AB结构中,主要是b方向的类1D扩散机制。其中,(LiBH4)2•AB的扩散激活能为0.25 eV,而LiBH4•AB的激活能仅为0.12 eV,明显低于文献报道的典型快离子导体的0.5 eV。研究结果对于发展氢化物基室温实用型固体电解质奠定了基础。

图片.png

图1. LiBH4, AB, (LiBH4)2•AB 和 LiBH4•AB材料的 (a) 光学照片,(b) XRD图谱,(c) FTIR谱线和 (d) NMR图谱

图片.png

图2. LiBH4, AB, (LiBH4)2•AB 和 LiBH4•AB材料的 (a-c) EIS图以及 (d) 离子电导率的Arrhenius图

图片.png

图3. 分子动力学模拟得到的 (a-d) (LiBH4)2•AB 和 (e-h) LiBH4•AB的Li离子扩散路径示意图

图片.png

图4. 理论计算的(LiBH4)2•AB和LiBH4•AB (a) 均方位移以及 (b) 扩散激活能

图片.png

图5. (LiBH4)2•AB和LiBH4•AB的(a,b)恒电流和(c,d)阶跃电流循环曲线


推荐
关闭