关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

导电高分子凝胶有望成为下一代锂离子电池粘合剂

2017.6.22

  导电高分子凝胶是一种拥有广阔应用前景的新型材料,因为它既是一种有机导体,又继承了凝胶材料独特的三维网络结构和由此产生的独特物理化学性质,比如较大的表面积、高孔隙率以及结构可调控性。近日,德克萨斯大学奥斯汀分校的余桂华教授团队利用导电高分子凝胶的这些独特性质,设计开发了新型锂离子电池粘合剂,有效提高了电池电极的性能。

  锂离子电池的电极通常由电极材料和粘合剂组成。近年来,一大批新型电极材料,尤其是纳米结构的电极材料成功合成。然而,这些高性能材料对锂离子电池粘合剂的要求也面临着挑战。传统粘合剂由导电添加剂(通常为碳纳米颗粒)和绝缘高分子组成,由于缺乏结构上的良好稳定性与相容性,无法实现电极内各种成分的均匀分布,无法同时保证电极内高效的电子和离子传输,从而导致电极中传输瓶颈的出现。

  德克萨斯大学奥斯汀分校团队设计开发的基于导电高分子凝胶的新型锂离子电池粘合剂很好地解决了上述问题。他们采用多官能团分子(植酸、酞菁铜等)作为交联剂,将导电高分子(聚吡咯)在电极材料分散液中原位聚合并且交联,形成拥有3D网络结构的电池电极。该凝胶粘合剂在电极中构建了一个拥有高电导率的骨架,将嵌于其中的电极材料互相连接,从而为每一个活性材料颗粒提供高效的导电通路。与此同时,三维结构电极中的多孔结构能促进电解液在电极中流动,从而改善离子的传输。得益于原位聚合,导电高分子凝胶粘合剂能在每一个电极材料颗粒的表面形成高分子薄层,从而避免颗粒的聚集,保证了通往每一个颗粒的电子离子传输。以上这些特性保证了电池电极的优良倍率性能。另外,得益于高分子材料的粘弹性,凝胶骨架能协调电极材料在电化学反应中产生的体积变化,从而保证传输通路的稳定性,提高电极的使用寿命。

  导电高分子凝胶粘合剂的特性能通过使用不同交联分子进行调控,从而广泛适用于各种电极材料。另外,该材料制备简单、价格低廉,有望适用于工业生产,成为下一代商用锂离子电池粘合剂。


推荐
热点排行
一周推荐
关闭