关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

当质谱技术应用于医学检验(二)

2021.6.18
二、质谱技术在医学检验中的主要应用
 

 

1、质谱技术在临床生化检验中的应用

质谱技术在应用较早的国家已成为继免疫学方法和化学发光法之后的第三大生化检测技术。目前采用质谱技术检测的项目数量虽然与其他两种方法相比还有很大差距,但越来越多的生化检测项目正被转移至质谱技术平台进行检测;质谱技术也成为生化检验领域新兴的发展方向和不可或缺的重要技术[6]。

 

质谱技术在临床生化检验中应用最为成熟的项目主要包括:生化遗传检测、治疗药物监测、类固醇激素检测、营养素检测以及毒理学检测。技术高特异性的特点可有效避免结构类似物对检测结果的影响,为临床提供更准确的结果,提高患者的依从性。技术高灵敏度的特点可在很大程度上弥补内分泌类固醇激素检测中,低浓度化合物检测困难和测不准的难题,为疾病的预测和诊疗分型提供准确结果。

 

国外许多内分泌实验室已经将大部分体内激素类物质的检测由放射免疫学方法或免疫学方法转换为LC-MS/MS方法,并将质谱技术作为内分泌类固醇激素类物质检测的首选方法。质谱技术一次可检测多种化合物的特点,可提高检测通量、减少样品用量和降低检测成本。如在生化遗传检测中,质谱技术一次可分析60多种氨基酸和酰基肉碱,筛查40余种新生儿遗传代谢病;在营养素检测中一次可分析20种氨基酸、20种脂肪酸、10余种微量元素或5种脂溶性维生素,有效提高了检测通量、减少了样品用量,并提供了丰富的检测信息;在毒理学检测中一次可检测尿液中19种药物,实现了高通量、快速高效的药物筛查技术[7]。

 

在临床生化检验领域,质谱技术相比于传统方法的优势较为突出,但随着技术的深入应用与经验的积累,技术应用的缺点也逐步凸显出来,包括质谱技术应用的陷阱问题、实验室日常运行过程中的管理问题以及相关政策法规问题等,主要体现在:

 

(1) 质谱技术在分析基质复杂的生物样本时,检测结果易受到基质效应、结构类似物干扰以及质谱信号产生的不稳定所带来的干扰影响;对这些问题认识和预防不当,则质谱的检测结果将存在较大的错误风险;

 

(2) 质谱技术相比于免疫学方法和化学发光法,检测的自动化程度较低,对人员依赖性较大;同时各厂家仪器系统还未实现与临床实验室信息管理系统 (LIS) 的接口双向对接,在数据处理和报告发放环节,仍未实现自动化;

 

(3) 对于质谱技术应用较成熟的项目,检测数据仍缺乏统一的应用标准[4];

 

(4) 质谱技术检测方法所需的标准物质、试剂和耗材等,目前主要依赖于进口,较多的检测项目受限于这些因素而开展受阻;

 

(5) 目前质谱实验室的方法基本为自建方法,标准化和规范化较为薄弱。美国临床实验室标准化协会已发布了临床质谱的使用指南[8],中华医学会检验医学分会、卫生计生委临床检验中心和《中华检验医学杂志》编辑部也于2017年10月份共同发布了《液相色谱-质谱临床应用建议》[9],这些都为质谱技术临床检测工作提供良好了的指导和参考;

 

(6) 由于质谱技术较为复杂,仪器构成多样化,在实际的应用过程中,需要有经验的专业技术人才进行规范的使用操作,但目前国内相关的技术人才匮乏;质谱实验室的仪器设备昂贵,对于安装条件有特殊要求,建设需要投入大量的资金;这些使得质谱技术临床应用的门槛较高,一定程度上限制了技术的应用;

 

(7) 在日常运营过程中仪器的维修服务成本较高,维修周期较长,维修的及时性也存在不能满足临床检测的报告周期固定性的要求;
 

(8) 国内对于质谱技术在临床的应用监管还不成熟,相关的检测项目在临床上无收费标准,也在一定程度上限制了技术的应用普及。

 

虽然质谱技术的应用仍存在较多缺陷,但随着技术的革新与发展,应用监管的成熟,各项瓶颈将被不断突破,未来随着质谱仪器的各项性能的提升;前处理自动化的实现;检测数据自动输出并实现与实验室信息系统的双向对接,以及结果报告自动预警功能的实现,质谱仪有望像免疫学方法和化学发光法一样,成为临床生化检验中自动化、智能化、易用化的检测平台。

 

2、质谱技术在微生物检验中的应用

近年来,MALDI-TOF技术已成功应用于微生物的鉴定及分型,并逐渐成为微生物鉴定的主流技术,可快速检测和鉴定革兰阳性菌、革兰阴性菌、厌氧菌、分枝杆菌、酵母菌和丝状真菌等[6,10-14]。相比于传统的革兰染色、菌落形态、表型鉴定及分子生物学技术, MALDI-TOF技术具有快速、准确、经济、高通量等优点。MALDI-TOF是基于细菌表面蛋白分子检测的技术,通过测定未知微生物自身独特的蛋白质指纹图谱及特征性的图谱峰,并与数据库中参考菌株的蛋白指纹图谱进行比对,从而实现菌株的鉴定[11]。

 

该技术是将完整的微生物细胞直接进行检测,样品制备简单,检测周转时间短,在数分钟内就可以得到一个菌种的测试结果,且分析用菌量极少,而传统方法完成常规细菌鉴定至少需要8~18h或更长时间。MALDI-TOF通过检测细菌胞膜成分或表达的特异蛋白对细菌进行种群的鉴别,敏感性和准确性高,可以区分表型相似或相同的菌株,提供属、种、型水平的鉴定,对临床常见分离菌鉴定到种水平的准确率很高。以16S r RNA基因测序结果为标准,质谱检测结果准确率为90.0%~95.0%[15],不仅可以识别病原菌,而且有助于发现新的病原菌。此外,质谱技术还用于病原体的药物敏感性检测,常规的药物敏感性实验方法比较费时,局限于少数细菌,MALDI-TOF通过比对耐药菌株和药物敏感菌株间的特征性蛋白和图谱峰及检测耐药菌株与抗生素共培养后的分解产物,可以分析几乎所有的耐药机制。

 

研究表明,相比于标准的微生物培养技术,质谱技术可降低约50%的试剂成本和劳动力成本[16]。但是,MALDI-TOF作为一项新兴技术,在微生物鉴定方面也存在着一定的局限性。如对于具有特殊结构的菌种和图谱极为相似的菌种的鉴定区分存在一定的难度、对于一些罕见菌种或新型细菌鉴定困难、对血培养样本中的混合菌种难以准确鉴别等,原因是质谱数据库中标准菌株的图谱有限、质谱峰的数据不充分以及细菌库中无这些菌株[17,18]。

 

随着仪器技术参数、质谱数据库及分析软件的不断更新完善,所有的分离株将被逐步的明确鉴定出来。因此,随着质谱技术在临床微生物实验室的应用数据库进一步完善,MALDI-TOF技术必将在微生物鉴定、菌种分型、同源分析、耐药监测等多方面发挥出更大作用,有望成为新一代病原微生物诊断的常规技术。

 

3、质谱技术在核酸检测中的应用

核酸质谱检测技术是在MALDI-TOF原理的基础上,结合引物延伸分析法和碱基特异裂解分析法,针对双链DNA的特性进行了特殊优化,使样品在电离过程中不产生或产生较少的碎片离子,可用于检测核酸的分子量和研究基因组单核苷酸多态性 (single nucleotide polymorphism, SNP) ,是近年来应用于临床核酸检测的新型软电离生物质谱[19]。相比于以凝胶电泳为基础的测序法,质谱技术具有分辨率高、分离速度快、杂质干扰少的优点,被广泛应用于核酸测序、核酸指纹图谱、核酸SNP分析等[20]。

 

SNP是指基因组DNA序列上某个位置单个核苷酸碱基的差异,即基因位点的突变,在人群中的发生频率大于1%,是决定个体疾病易感性和药物反应性差异的重要因素,通过分析突变的位点,可预测疾病,并提供诊断意见和指导用药。MALDI-TOF分析检测SNP是根据不同的分子量将等位基因排序,区分和鉴别相对分子量达7000左右 (含20多个碱基) 、仅存在1个碱基差别的不同DNA,可以精准地分辨到碱基种类。

 

药物代谢酶遗传多态性是产生药物毒副作用、降低或丧失药物疗效的主要原因之一,通过检测药物代谢酶的基因型可对临床用药方案进行指导和调整,为临床个体化用药提供依据。以往检测药物代谢酶基因多态性通常采用化学法,依赖于核苷酸的互补性对核酸序列进行分析,对于序列的长度、复杂性、反应条件等都具有较高的要求,容易受到不同程度的化学因素干扰,导致检测结果出现偏差。若能将化学和物理方法结合起来对药物代谢酶基因进行检测,将极大提高检测结果的准确性。

 

MALDI-TOF是药物代谢酶基因多态性的新型检测方法,其根据核苷酸分子被电离后在真空管中的飞行时间来确定其分子量大小,最终确定核苷酸序列,检测结果仅仅依赖于核酸分子量。经过验证比较,MALDI-TOF检测结果与Sanger测序的结果符合率为100%[21,22]。传统的Sanger测序方法虽然是序列测定的金标准,但其操作步骤繁琐费时和试剂成本高等限制了其临床应用。MALDI-TOF可通过一次实验检测多个标本的多个突变,实现基因型的高通量、快速检测,为个体化用药提供更加多样化的检测手段。

 

4、质谱技术在蛋白质组学中的应用

质谱技术可检测蛋白质的氨基酸组成、分子量、多肽或二硫键的数目与位置及蛋白质的空间构象等,从而实现未知肽段的筛选、测序、肽指纹图谱、蛋白质表达谱、蛋白质翻译后修饰谱、全蛋白完整无损分析等。质谱多样化的前端连接方式极大地促进了研究者对基础蛋白科学领域的认识,但将这些认识转变为对临床实践的有效信息则有相当大的难度。到目前为止,基于质谱技术的将蛋白组学多样性的蛋白和多肽标志物, 成功应用于临床检测的案例并不多见[22]。

 

相反,对于已知的、确定的多肽和蛋白标志物即目标蛋白组学,质谱技术得到了较好的应用。目前,已经有一些关于LC-MS/MS用于临床目标多肽和蛋白分析的文章发表,如甲状腺球蛋白 (Tg) 和淀粉样蛋白的鉴定与定量分析等[23-25]。质谱技术在这一领域的应用,在很多情况下均可为临床提供有价值的信息[21],如对某一分析物的免疫学方法不存在时;已经存在的免疫学方法不能给出某些临床关键问题的答案时;已经存在的免疫学方法存在干扰时;某一分析物存在多个异构体时;对同一分析物的检测,不同的检测方法间存在较大的结果变异性时;已经存在的分析方法流程较为复杂时,质谱技术均可发挥相应作用,弥补免疫学方法的不足。

 

质谱技术在医学检验领域中应用的下个目标和挑战,是如何弥补免疫学方法在蛋白和多肽检测方面的局限性。相信随着技术的发展,这方面的突破会越来越多,为临床提供更多的有价值的质谱检测数据。

 

【参考文献】

 

[1]潘柏申.迎接质谱技术进入检验医学领域[J].中华检验医学杂志, 2017, 40 (10) :733-736.

[2] Jannetto PJ, Fitzgerald RL.Effective use of mass spectrometry in the clinical laboratory[J].Clin Chem, 2016, 62 (1) :92-98.

[3] 韩丽乔, 庄俊华, 黄宪章.质谱技术及其在临床检验中的应用[J].检验医学, 2013, 28 (3) :252-256.

[4] 张自强, 李岩.质谱技术在临床生化检测中的应用[J].检验医学, 2015, 30 (5) :407-409.

[5] 李水军, 王思合.液相色谱-串联质谱技术的临床应用进展[J].临床检验杂志, 2016, 34 (12) :881-884.

[6] Vogeser M, Seger C.Quality management in clinical application of mass spectrometry measurement systems[J].Clin Biochem, 2016, 49 (13-14) :947-954.

[7] 王思合, 程雅婷, 赵蓓蓓.临床色谱质谱检验技术[M].北京:人民卫生出版社, 2017.

[8] 沈立松, 马妍慧.质谱技术在检验医学中的应用现状和前景[J].诊断学理论与实践, 2012, 11 (5) :536-538.

[9] 中华医学会检验医学分会, 卫生计生委临床检验中心.液相色谱-质谱临床应用建议[J].中华检验医学杂志, 2017, 40 (10) :770-779.

[10] Van Veen SQ, Class ECJ, Kuijper EJ.High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization time of flight mass spectrometry in conventional medical microbiology laboratories[J].J Clin Microbiol, 2010, 48 (3) :900-907.

[11] Robert PR, Brosnikoff C, Turnbull L, et al.Multicenter evaluation of the vitek 2 anaerobe and Coryne bacterium identification card[J].J Clin Microbiol, 2008, 46 (8) :2646-2651.


推荐
关闭