关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

科学仪器学科与技术进展的研究报告(四)

2020.7.14

6.在光谱技术领域值得关注的三项新技术取得重大突破

  (1)太赫兹辐射技术及其相关仪器的新进展

  近二年来,太赫兹辐射技术取得了不断的进步,特别是这些技术的应用得到了迅速的发展,相关仪器开发和国防、安全检查、材料识别与诊断、生产监测、生物医学等领域应用都取得了许多进步。

  太赫兹辐射(T-射线波长为3,000~30微米范围内的电磁波)可以像X-射线那样穿过某些材料,“看”到其背后的物质。T-射线光子能量极低,不会对人体和其他材料造成电离,大多数包装材料如纸张、碳素板、塑料等对T-射线都是透明的,而金属和含有水分的材料不能透过T-射线,可以利用T-射线进行成像,透视出包装物品内部物体的T-射线图像来,从而可以应用于机场行李箱的安全检查和医生对人体内有损伤或破裂器官的检查。该技术的最大困难在于难探测到比较微弱的太赫兹辐射信号。

  太赫兹技术的应用领域主要包括太赫兹光谱、太赫兹成像和太赫兹通讯几个方面。美国PicoMatrix公司和Zomega Technology公司、英国TeraVIEW公司、日本Nikon公司、布鲁克光谱公司都相继开发出了太赫兹光谱仪和成像系统。

  太赫兹时域光谱技术,目前仍然是太赫兹光谱技术的核心研发领域。

  太赫兹成像技术,目前主要向着实时成像、全息成像和三维立体成像技术方向发展。利用太赫兹电场相位信息的相位成像技术,是当前国际上积极发展的太赫兹成像技术之一。

  为了发展小型化太赫兹系统,基于飞秒光纤激光器的太赫兹产生与探测系统,已经有实验室原型样机出现。太赫兹光子器件的研发,如太赫兹透镜、太赫兹滤波片、太赫兹波带片等光子学器件,已经吸引了国际科技界的广泛关注。

  美国、日本和欧洲相继将太赫兹技术列为未来几年发展的关键技术。

  我国于2003年启动了“太赫兹物理器件及应用研究重大项目”。“我国首台基于电子激光的太赫辐射源”被评为我国2005年基础研究十大新闻的第三项。

  (2)光学分子成像系统

  分子影像学是一门新兴的、交叉的科学,具有传统成像所不具有的特点:无创伤、实时、活体、特异、精细(分子水平)的显像等独特性质。

  国外光学分子成像系统

  A. 精诺真活体内可见光成像系统——Xenogen-200

  200系列体内可见光成像系统,可以做激发荧光和自发荧光断层成像,可实现三维荧光光源的重建。它的探测深度为:颅内可达3~4cm,分辨率为1~3mm。

  B. KODAK高性能数码成像系统——KODAK

  它能进行二维成像,分辨率为厘米级。不能进行三维成像。

  C. 小动物光学分子成像系统——GE

  GE Healthcare通用电气医疗集团的eXplore Optix小动物光学分子成像系统,是激发荧光成像设备,探测深度:灵敏度高的时候,为1.5~2cm;灵敏度低的时候,为3~4cm。分辨率为0.5~3mm。虽然国外已经做出了光学分子成像系统,不同程度上还是有一定的缺陷。

  国内光学分子成像系统

  国内,清华大学、天津大学等少数的科研单位正在研制激发荧光断层成像(FMT)原型系统。截止到目前为止,国内还没有拥有自主知识产权的光学分子成像设备。在综合上述3种国外光学分子成像设备的优点并对缺陷进行了改进之后,我国构建了BLT/FMT原型系统。该系统包括荧光信号采集装置、图像信号预处理模块以及计算机系统,可以完成自发荧光断层成像(BLT)和激发荧光断层成像(FMT)。BLT软件已获得我国科技进步二等奖,BLT/FMT的研究已列入国家973计划。

   中科恺盛利用中科院的分子影像技术,成功开发出“二维实时在体生物自发光分子影像系统”、“三维多模态多光谱生物自发光分子影像系统”系列产品,并于今年2月生产出我国第一台拥有完全自主知识产权的高端医疗器械——生物自发荧光分子影像系统,从而结束了我国在分子影像这一新兴领域没有完全自主知识产权高端医疗器械的历史。和目前国际上少数发达国家生产的类似产品比较,中科恺盛的分子影像系统不仅能对对象的在体进行实时、连续无创观察;而且因其攻克了目前光学分子影像设备无法解决生物组织“非匀质下重建”的难题,还能在体区分出心、肝、脾、肺等各个组织器官。此外,该系统采用了世界领先的计算机图像重建算法,国外产品的空间误差一般在2-3毫米,而该设备已能把误差控制在0.5到1毫米。大大地提高了实验结果的准确性。

  (3)表面增强拉曼光谱技术

  表面增强拉曼散射(SERS)技术具有灵敏度高、干扰小的特点,适合于研究界面效应,可以解决生物化学、生物物理和分子生物学中的许多难题。以往由于重现性不好等问题,SERS在分析测试中还没有发挥应有的作用。近年来, SERS的最新成果有望解决超高灵敏度分析问题,甚至进行生物单细胞和单分子以及纳米结构的分析。针尖增强拉曼显微技术(Tip-enhanced Raman microscopy)利用金属涂层的悬臂在针尖区域产生增强信号,使得在与针尖相接触的被研究物表面有可能测定SERS信号。生物芯片与SERS技术的结合也是一个令人感兴趣的方法。在芯片表面通过固定生物病原体以及对SERS有活性的金属,来测定出SERS信号。这些方法还有一些技术难题需要解决,但超高的SERS信号为建立高灵敏度的分析方法提供了可能,其前景是很诱人的。

(三)质谱仪及其分析技术的新进展

  质谱分析技术是探索物质组分和结构的最有力手段,在引发的物理、化学、生物的一系列科学突破中起着关键作用,所以诺贝尔奖曾于1906、1911、1922、1989、1992和2002年度,授予与质谱仪和质谱分析理论有关的7位科学家。

  离子化技术和质量分析器是质谱技术的核心,前者是把待分析样品分子转化为离子,后者是把离子按其质量分离并分别测量它们的数目,构成质谱图。


推荐
关闭