关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

磁性器件损耗的分析设计优化(四)

2020.9.29

通过分析可以发现,电感中的磁通主要分为以下几个部分:

①主磁路磁通。这部分磁通是流通在电感磁芯中的磁通,它不会在磁芯窗口中出现,因此它不会切割导体,也不会产生导体损耗。

②气隙边缘磁通,即扩散磁通。这部分磁通是由于气隙磁势而产生,它在磁芯窗口中出现,在高频时会切割窗口中的导体造成涡流损耗。

③旁路磁通。这部分磁通不是由于气隙磁势而产生,而是由于相邻磁芯柱之间的磁势差而产生,当气隙较小时,旁路磁通在窗口磁通中占较大比例。

wx_article_20191230231038_OvFBy6.jpg

旁路磁通损耗

旁路磁通通过磁芯窗口跨过相邻的磁芯柱,在绕组上产生大量的涡流和损耗,气隙的边缘磁通是由于跨过气隙的磁势造成的,而旁路磁通是由于相邻磁芯柱间的磁势差异造成,沿着磁芯柱窗口的磁势分布取决于载流绕组和气隙的位置。沿着磁芯柱磁势随着载流绕组安匝增大而增加,随着跨过气隙而降低。通过做出如下一维假设,可以对旁路磁通作一定的分析。

1.假定磁芯磁导率是无穷的,磁场进入磁芯窗口是垂直于磁芯表面的。

2.绕组添满整个磁芯窗口宽度,绕组边缘效应很小,可忽略。

3.对圆导体进行一维等效,变成一片方导体,使用等效厚度和等效电导率,磁场在磁芯窗口中平行于导体表面,属一维分布。

4.气隙可认为很小,边缘磁通很小,对旁路磁通影响很小,然而无论气隙多么小,边缘磁通都存在,因为气隙磁势是存在的。

wx_article_20191230231038_E6Ffzt.jpg

Dowell绕组损耗分析模型

如上图所示为磁芯窗口中的第m层铜带绕组,其上、下表面的磁场强度分别Hm1和Hm2,则这层铜带绕组的电流分布和绕组损耗可以通过Dowell方程得出,如下表达式:

wx_article_20191230231038_8G7Xl5.jpg

式中

wx_article_20191230231038_b3VYOn.jpg

f是工作频率,σeq是铜带的等效电导率,μ是绕组的磁导率,Aeq和W是等效铜带的厚度和宽度。总的旁路磁通绕组损耗可以通过求和得出:

wx_article_20191230231038_FchoPO.jpg

通过用一维的方式分析旁路磁通可知:绕组的电流密度与沿导体的磁场强度密切相关,不同的气隙位置导致不同的窗口磁势,因此沿导体的磁场强度会有较大的不同,沿导体的电流密度分布也会有较大的不同。

旁路磁通的大小是与磁芯高度方向上的平均磁压降密切相关的。当气隙处于中间与两端时,磁压分布如下图所示:

wx_article_20191230231038_iokdCj.jpg

EI型(a)和EE(b)型磁芯电感窗口磁势分布

图a中的平均磁压降为IN/2,b为IN/4。

假定旁路磁通与底边平行,又由于B=dU*u0/w,可知:a中的磁密必定大于b中的磁密,磁场方向与线圈垂直。

下面是损耗与平均磁压降的关系:

wx_article_20191230231038_nYtp8M.jpg

由图可看出磁压降越低,损耗越低。

由此,如果我们可以将磁压降降得更低,就可得到损耗更低的电感!

wx_article_20191230231038_MR4pAX.jpg

磁压降与气隙位置的关系

如果将气隙交错布置,使磁压降在高度方向上出现二次转折,仅为IN/8。它的损耗比起气隙居中者可再下降约50%。

因此我们可以知道在电感磁势一定的情况下,EE磁芯窗口中的最大磁势是EI磁芯的一半。磁芯窗口中的最大磁势的减小,有助于减小旁路磁通,进而旁路磁通造成的导体涡流损耗也会减小,所以在选择磁芯时应该引起注意,利用交错气隙可以减少磁芯窗口内的旁路磁通。


推荐
关闭