关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

实验分析仪器--有机质谱的分类与应用

2022.1.26

有机质谱主要用于各种有机化合物的结构分析,它提供了有机化合物最直观的特征信息,即分子量及官能团碎片结构信息。在某些条件下,这些信息足以确定一个有机化合物的结构。此外,在高分辨条件下,将质谱信号通过计算机运算,还可以获知其元素组成。目前,有机质谱根据质量分析器工作原理主要分为四极杆质谱、离子阱质谱、飞行时间质谱及傅里叶变换离子回旋共振质谱,其中四极杆质谱及离子阴质谱为低分辨质谱,而飞行时间质谱及傅里叶变换离子回旋共振质谱为高分辨质谱;另外按照联用技术划分主要分为气相色谱-质谱、液相色谱-质谱、毛细管电泳-质谱及芯片质谱等。关于质谱质量分析器及联用技术的原理及特点等在后文有详细介绍,在此不一一赘述。


有机质谱分析虽起步较晚,但发展十分迅速。由于与分离型仪器(气相色谱仪、液相色谱仪)联用的成功,质谱已成为复杂混合物(包括天然产物、食品、药物、代谢产物、污染物等)成分分析的最有效工具。这些混合物的组分可多至数百个甚至上千个,含量也千差万别,用其他方法分析一般耗时耗力,有时则根本不可能进行。而用色谱-质谱联用法则可在较短的时间内对这些组分进行定性和定量分析。结合裂解方法,色谱-质谱联用甚至可以分析高分子样品的成分。


20世纪80年代中期出现的电喷雾电离(ESI)和基质辅助激光解吸电离(MALDI),这两种常压离子化电离技术所具有的高灵敏度和高质量检测范围使得在fmol(10-15mol)乃至amol(10-18mol)水平检测分子量高达几十万的生物大分子成为可能,从而开拓了有机质谱一个崭新的领域——生物质谱,促使质谱技术在生命科学领域获得广泛应用和发展。目前,有机质谱法应用于生物化学、生物医学领域的研究工作已成为质谱学发展的热点。用质谱技术分析核糖、核酸、多肽、蛋白质方面的许多成功的研究工作,都标志着它作为一种生化分析方法将占据重要的地位。此外,用质谱技术应用于医学疾病诊断及在法庭科学中的微量甚至痕量样品分析的研究工作也日趋显著。近年来,由于常压离子化技术的发展,有机质谱可直接分析气态、液态、胶体、组织等复杂基体样品,其应用得到了进一步的拓展。



推荐
关闭