关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

原子力显微镜的原理及应用

2020.12.23

  因为有了超级天文望远镜,我们可以拍下宇宙的永恒美丽; 因为有了照相机,我们可以记录大自然的千奇百怪和绚烂多彩;因为有了光学显微镜,我们揭开了微观世界神秘面纱的一角。然而,由于光波衍射现象的限制,传统光学显微镜的放大率不能无限提高,我们对纳米世界(<1微米,即百万分之一米)的真实面貌还了解较少。

  “原子力显微镜”的诞生

  人类探索未知世界的好奇心并未因此而消失,反而越来越强。1986年,IBM实验室的G. Binnig、Ch. Gerber和斯坦福大学的C. F. Quate 教授在扫描隧道显微镜的基础上发明了原子力显微镜[1],由此开创出一种全新的观测方式。人们借助这种显微镜既可以观察材料和生物样品表面的纳米级精细形貌,也可以研究这些样品的力学性能。

  原子力显微镜”的工作原理

   原子力显微镜通过机械探针“触摸”样品表面表征其形貌并记录力学性质。它的工作原理(图一)类似人类用手指触摸物品表面,当探针靠近样品表面时,探针与样品表面间会产生一个相互作用力,此作用力会导致悬臂发生偏折。激光二极管产生的激光束通过透镜聚焦到悬臂背面,然后再反射到光电二极管上形成反馈。在扫描样品时,样品在载物台上缓慢移动,而微悬臂在反馈调节系统调节下将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,由检测器记录表面形貌和力学信息。

  原子力显微镜”下的微观世界

   原子力显微镜因其超高的成像分辨率,常常获得令人惊艳的结果。自然界里,氢原子与电负性大的原子X以共价键结合,它们若与电负性大、半径小的原子Z(O、F、N)接触生成X-H…Z形式的一种特殊的分子间或分子内相互作用,则为氢键。这一教科书上的定义,一直以来为大家所熟知,然而人们始终无法窥探其原本“容貌”。中国国家纳米科学中心的科学家们利用原子力显微镜技术实现了对化学分子间作用的直接成像,在国际上首次直接观察到了分子间的氢键(图二)[2]。这一研究成果使我们教科书里的“氢键”变成了“眼见为实”。随后,又有科学家利用原子力显微镜对单分子中氢键的强度进行研究,这一测量结果与理论计算精确吻合。


推荐
热点排行
一周推荐
关闭