关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

超临界流体萃取原理介绍

2022.5.04

  超临界流体萃取的基本原理:当气体处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,粘度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加,极性增大,利用程序升压可将不同极性的成分进行分部提取。提取完成后,改变体系温度或压力,使超临界流体变成普通气体逸散出去,物料中已提取的成分就可以完全或基本上完全析出,达到提取和分离的目的。

  物质的其中四种状态(固态、液态、气态和超临界状态)(还有其他形态)随着它的温度和压力而改变。以CO2为例,CO2在三相点上,固、液、气三相共存的温度T(tr)为-56.4℃(217K),压力P(tr)为5.2×105Pa。CO2的蒸气压线终止于临界点C(Tc=31.3℃,Pc=7.38×106Pa,ρc=0.47 g/cm3)。超过临界点以上,液气两相的界面消失,成为超临界流体(SF)。SF的扩散系数(10-1~10-4cm2/s)比一般液体的扩散系数(10-2~10-5cm2/s)高一个数量级,而它的粘度(10-2~10-4N·s/m2)要低于一般液体(10-1~10-3N·s/m2)一个数量级。与液-液萃取系统相比,SF系统具有较快的质量传递和萃取速度。因此能有效地穿入固体样品的空隙中进行萃取分离。SF的密度随着温度和压力改变,导致它的溶解度参数(solubility parameter)的改变。在较低的密度下,SF-CO2的溶解度参数接近己烷;在较高的密度下,它可接近氯仿。因此控制SF的密度(温度和压力),可获得所需要的溶剂强度。这种能力使得SF可任意改变溶剂强度而适合于不同的溶质。一般而论,SF能有效地溶解非极性固体,它亦能按溶质的极性做选择性的萃取,这在分离和分析化学的领域用途很广。

  CO2具有较低的临界温度和压力,且价格便宜,无毒,具有较低的活性,因此SF-CO2常被用来萃取非极性和略有极性的物质。

  在超临界状态下,流体兼有气 液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内出成比例,故可通过控制温度和压力改变物质的溶解度。超临界流体已用于药物的提取合成分析及加工。

推荐
关闭