关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

Nature:细胞多能性诱导指南

2014.12.12

  来自于成熟细胞的多能干细胞能分化成为几乎类型的细胞。日前科学家们对这个重编程过程进行了全面分析,并由此发现了一种新型的多能细胞。

  多能性是指细胞生成机体所有细胞类型的能力,一般存在于早期胚胎发育中。从胚胎能分离到两种不同的多能细胞进行体外培养:胚胎干细胞和外胚层干细胞。此外,特定的转录因子组合(重编程因子)能使成熟细胞恢复多能性,成为诱导多能干细胞(iPSC)。iPS重编程会生成一系列不同的细胞类型,说明可能存在未被发现的多能状态。

  十二月十日发表的五篇文章(两篇Nature三篇Nature Communications)就描述了iPS重编程的新型多能性产物,F-class细胞。

  这五篇文章来自于Project Grandiose,这个项目旨在从客观角度深入分析iPS重编程过程。研究人员认为,广泛记录重编程每个阶段发生的分子和细胞转变,能够得到iPS重编程的完整路线图,帮助人们理解重编程时出现的不同多能细胞,这些细胞差异在许多研究中受到了忽视。

  F-class细胞的得名于其独特的模糊形态,是一种不同于胚胎干细胞ES和外胚层干细胞的多能细胞。在传统重编程方法中,达到多能性之后宿主细胞表达的因子会沉默重编程因子。然而,F-class细胞的维持依赖于转录因子持续性的高表达。

  研究人员发现,F-class细胞形态模糊是因为它们粘性低。粘性低加上增殖快,意味着这些细胞更适合大规模生产,而细胞疗法正好要用到大量的细胞。不过,F-class细胞对转基因的依赖目前还是其临床应用的一大障碍。

  研究人员进行了目前最详尽的重编程分析,明确了通向多能性的不同分子路径。举例来说,他们揭示了决定ES状态和F-class状态的关键决定因素。F-class状态的出现依赖于抑制ES细胞中表达的基因,这是通过组蛋白H3赖氨酸27的三甲基化实现的。而DNA甲基化标签的丧失是ES状态所必需的条件,F-class细胞保留有一些这样的标签。研究总结道,DNA甲基化在iPS重编程中起到了至关重要的作用,是F-class状态和ES状态的表观遗传学转换开关。

  这项研究分析了iPS重编程过程中小RNA(转录后调控子)发生的改变,发现有一组特殊的microRNA为F-class多能性提供支持。研究还表明,在细胞重编程过程中有两波蛋白表达的改组,而且F-class状态和ES状态的蛋白表达模式存在差异。

  Project Grandiose开启了全新的研究领域,向人们展示了体外重编程达到的新型多能状态。这说明细胞重编程可能还有其它的多能性终点,胚胎发育中也可能出现了更多的多能状态。

推荐
热点排行
一周推荐
关闭