关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

海洋被子植物Zostera marina的PSI中依赖于NDH高效的环式...-2

2021.3.02

—— 材料和方法 ——


植物材料

在位于中国山东半岛北侧的荣成(37°16′N, 122°41′E)3 m深度的次潮汐海草床上采集到根茎系统完整(6-9节间)的健康大叶藻。在2019年5月连续几天的下午晚些时候进行采样。大叶藻在实验前在过滤海水水族馆预培养3天,在15℃和100μmolm-2s-1,以10:14-h的光:暗周期进行照明。根据最小饱和光强度,照明由A型LED灯提供,色温范围6000 K。从叶鞘上方2厘米处采集叶片进行实验测量,以保持相同的年龄。

进化分析

基于29个NDH亚单位的串联序列,采用MEGA 5.0程序构建系统发育树,并进行了1000次重复的bootstrap测试。这30个物种的所有这些序列都是通过BLASTP分析从国家生物技术信息中心(NCBI)检索到的。交互式生命树(https:// url .embl.de/)用于对树进行注释和修饰。

光处理和抑制剂处理

暗适应过夜的大叶藻暴露在三种不同的光强度,50,300和600μmolm-2s - 1反应3小时。这些处理在下文称为弱光(LL)、中光(ML)和强光(HL),它们通过德国DUAL-PAM-100来测量最小饱和光强来确定。所有处理均在光照培养箱(GZP-250N,上海森欣实验仪器有限公司)中进行,控制海水温度为15℃,模拟其在自然环境中的生长状态。光由A型LED灯提供,色温范围6000 K。在测定荧光动力学之前,随机选取暴露于光照下的叶片,每隔20分钟至暗适应15分钟。Antimycin A (AA, Sigma)和rotenone (Aldrich)分别用于抑制PGR5/L1和NDH依赖的PSI-CEF。分别以甲醇和二甲亚砜为溶剂,制备了AA和鱼藤酮原液。处理后样品的溶剂浓度低于1% (v/v)。叶片使用过滤海水或含1μM AA, 150μM鱼藤酮的海水进行饱和,并在光处理之前,在15℃的黑暗条件下孵育叶片1 h。

叶绿素A荧光和P700测定

利用DUAL-PAM-100测量系统同时测量叶绿素a荧光和P700+吸光度变化。在微弱的调制光下(5μmol m-2s-1)测量出最小荧光值(Fo)后,分别对暗适应和光适应条件下的叶片在300ms的饱和脉冲光下(16000μmol m-2 s-1)测量Fm和Fm’。Fs是光照条件下的稳态荧光值。P700+的信号会在最小(完全还原)和最大(完全氧化)之间变化。最大的变化在P700完全氧化状态(Pm)和一个给定的光状态(Pm’)是在远红光(250μmol m− 2 s−1)和光化光(127μmol m− 2 s−1)预照射后由饱和脉冲光测量。PSII的最大光量子产量:Fv/Fm = (Fm − Fo)/Fm,PSII的电子传递速率:ETRII = 0.84 × PPDF × 0.5 ×( ­Fm’—Fs)∕Fm’,PSI的电子传递速率:0.84 × PPDF × 0.5 ×( ­Pm’—P)/Pm,PSI-CEF:ETRI-ETRII。

暗适应样品在光化光下照射2min,在关闭AL后,我们监测了随后叶绿素荧光的瞬时增加作为NDH活性的一个指标,关闭AL后10 s内测定鼓包的初始斜率。根据Li等人的方法,在暗适应叶片中,当光诱导吸光度在830nm处发生变化时,监测P700+的还原动力学。我们测量P700的再次还原之前采用一个专用校准程序对P700信号进行归一化处理。远红光照射后10 s内测定P700+再还原半衰期缩短(t1/2),表明PSI-CEF活性升高。

快速OJIP荧光瞬态测量

利用多功能植物效率分析法测定叶绿素荧光快速诱导曲线。由曲线得到如下数据:20 μs的最小荧光值(Fo),最大荧光值(Fm),0.3ms的荧光值(K-step,Fk),3ms的荧光值(J-step,Fj),30ms的荧光值(I-step,Fi)。为了评价PSII的活性,计算了PSII从光子吸收到系统间电子受体减少的能量守恒性能指数(势):PIABS=4 ×(Fk − Fo) × Fm × (Fm − FJ)/Fv × (FJ − Fo)2,作为PSII供体侧指标监测的k步归一化可变荧光被计算为WK = (Fk−Fo)/(FJ−Fo)。

ECS分析

电致变色效应吸光度信号变化的测量是用DUAL-PAM-100的P515/535模块在515nm波长下进行监测。样品先暗适应15min,再在127μmolm-2s-1的光化光下照射5min,然后再进行测量。AL被关闭,记录ECS的衰变动力学,以确定总ECS,代表了总质子动能(pmf)的大小及其组成部分,即ΔpH和Δψ。ECS衰减(gH+)是通过最初的300ms响应速率到P515发射结束来估计的。

免疫印迹分析

从处理的叶片中分离出叶绿体按照是厂家的指导使用Plants Leaf Chloroplast Rude Divide Kit测量。叶绿素含量测定采用Porra等人的方法。根据Towbin等人的描述,对NdhH、NdhS、PGR5、PGRL1、PsbO、PsbP和PsbQ(Agrisera,瑞典)的抗体进行Westernblot分析。采用Rubisco大亚单位抗体(RbcL, Agrisera,瑞典)作为内参对照。用凝胶对x射线胶片上产生的化学发光带进行密度测量使用图像实验室软件对Doc XR+系统(Bio-Rad, Hercules, CA, USA)进行量化。每个目标条带的总密度都是基于RbcL密度进行标准化的。

数据分析

采用SPSS 22.0统计软件包进行统计分析。所有参数均采用单因素方差分析。采用Tukey趋势检验进行事后比较。差异有统计学意义P < 0.05。使用Origin9.0程序,采用单指数函数拟合法对P700+再还原的每个点进行拟合。使用线性回归分析来评估WK,PIABS,和鼓包。


—— 结果 ——


NDH复合体的系统发生分析

基于连接的29个NDH亚基序列构建了叶绿体NDH复合体的系统发生树,显示了NDH复合序列在蓝藻、苔藓、蕨类、蕨类和石生植物中NDH复合体的系统发育关系。在蓝藻门,轮藻门和蕨类植物NDH复合物均不完整,并且部分被子植物中也缺失部分NDH亚基的。Z.marina包含五个完整的NDH亚复合物。海洋植物中除了原始藻类之外,绿藻、硅藻、红藻和褐藻等常见藻类都缺少编码叶绿体NDH复合体亚基的同源基因,这表明Z. marina中NDH复合体的存在可能在光合作用中发挥重要作用。
 

2020050771245896.jpg

图1 叶绿体NDH复合体的系统发生树




推荐
关闭