关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

浅谈基因治疗药物市场展望(二)

2020.4.29

肿瘤耐药基因治疗:化疗是目前临床上治疗恶性肿瘤的最重要手段之一,然而由于肿瘤细胞常常会对化疗药物产生耐药而导致患者对治疗不再敏感,最终导致化疗失败甚至疾病复发。根据肿瘤细胞的耐药特点,耐药可分为原药耐药(PDR)和多药耐药(MDR)两大类。原药耐药(PDR)是指对一种抗肿瘤药物产生抗药性后,对非同类型药物仍敏感;多药耐药性(multiple drug resistance,MDR)是指一些癌细胞对一种抗肿瘤药物产生耐药性,同时对其他非同类药物也产生抗药性,是造成肿瘤化学药物治疗(化疗)失败的主要原因。

溶瘤病毒的肿瘤治疗:人们发现利用病毒可以治疗肿瘤,发现了许多病毒具有天然的溶瘤特性,如流感病毒、单纯疱疹病毒、西尼罗河脑炎病毒、新城疫病毒和痘苗病毒等。由于野生型和弱毒株病毒的致病性很难人为控制,所以无法将这些病毒应用于癌症的临床治疗。随着病毒学和遗传学的发展,各种病毒基因的功能和作用机制日益清楚,并且随着基因工程等技术的进步,人们已经能够对病毒基因进行各种定向操作和改造,从而定向地改变和控制病毒的行为和功能。1991年首次对单纯疱疹病毒1型(herpes simplex virus type 1,HSV-1)进行基因改造,使其胸苷激酶(Thymidine kinase,TK)基因失活,建立了能抑制癌细胞并具自主复制活性的溶瘤病毒株。之后,利用溶瘤病毒治疗癌症的策略和研究得到飞速地发展。继HSV-1后,腺病毒和牛痘病毒等重组基因病毒进一步被开发;另外,野生型病毒或自然变异的弱毒病毒株基因改造的研究也取得了很好的效果。

相比较其他领域尚处于临床一期和二期的项目,肿瘤领域将成为近期有望上市较多产品的治疗领域。乳腺癌、子宫颈癌、直肠癌、肺癌、黑色素瘤、神经细胞瘤、卵巢癌、胰腺癌、前列腺癌、肾脏细胞癌等多种肿瘤领域最有希望有产品上市。特别是黑色素瘤、头颈部癌和前列腺癌,被认为最有希望在美国上市。

IMS数据显示,2014年全球抗肿瘤药物市场规模为1000亿美元,2020年将增至1500亿美元。具有靶向性、特效性和低毒性等特点的抗肿瘤单克隆抗体药占34%,达到238亿美元。使用单抗药物的价格和基因治疗价格类似。其中治疗乳腺癌著名单抗药物“赫赛汀”,该药物是治疗乳腺癌的重磅产品,2013年的全球销售额达68.39亿美元,2014年销售额达62.7亿美元。如果基因治疗在癌症上的疗效显著,能替代单抗药物,其市场预期在238亿美元。

3 第三代基因编辑技术:CRISPR-Cas9

成簇规律间隔短回文重复序列系统技术(Clustered regularly interspaced short palindromic repeats /CRISPR associated proteins):第三代基因编辑技术,能够同时实现多个基因的编辑,靶向效率更高。操作简单,构建成本低,编辑效率高。目前,CRISPR 已经不仅仅是一套可以精确剪切任何基因的多功能剪刀,而且可以作为一个多功能传输系统,精确控制任何基因。

目前广泛使用的 CRISPR/Cas9系统主要可分为体外和体内两种不同的应用。针对体外的应用主要以纯化的Cas9核酸酶配以向导RNA,用于在体外对基因组片段进行靶向切割以替代传统的限制性内切酶或PCR克隆。针对体内的应用主要有两种组合方式,一种是活性形式,即带有核定位信号的纯化的Cas9核酸酶,配以纯化的向导RNA,进入细胞核后对基因组发挥定向剪切作用;另一种就是以载体的形式将Cas9和向导RNA送入细胞,在体内表达和转录后发挥作用。两种体内应用主要在细胞或个体水平上实现基因的敲除和插入的基因编辑。

4 CRISPR 和细胞治疗(CAR-T)的结合:最先进的肿瘤治疗技术

嵌合抗原受体(chimeric antigen receptor,CAR)技术:是将人为设计的针对某种肿瘤相关抗原或者肿瘤特异性抗原单链抗体-CAR通过基因工程方法引入T细胞表面,重新定向T细胞的免疫反应,使T细胞能够以非HLA分子限制性的方式识别肿瘤细胞,发挥杀伤作用。CAR-T存在的问题:CAR-T具有特异性高、疗效显著、副作用低等优点,其常见的副作用包括细胞因子释放综合征、脱靶毒性等,应用难点包括实体瘤治疗效果较差、无法供应现货。

目前,借助CRISPR技术,CAR-T技术已经成功升级:CRISPR技术可高效多点地定向编辑T细胞,有效解决副作用强烈、实体瘤效果较差、个体疗效差异大以及难商业化等问题,因此,CRISPR和CAR-T的联合有望迅速推进临床试验并实现工业化生产。

国外CAR-T疗法巨头纷纷投资CRISPR技术:目前几乎所有的CAR-T疗法公司都和基因编辑公司开展合作,包括诺华、Juno和Cellectis在内的6家CAR-T疗法企业与Intellia Therapeutics、Editas Medicine和CRISPR Therapeutics等基因编辑公司强强联合,开发结合CRISPR技术和CAR-T疗法结合的项目。Novartis公司是全球 CAR-T技术研发进展最快的公司,预计诺华的CTL019第一个适应症急性淋巴细胞白血病将于2016年内获批,2017年还将获批慢性淋巴细胞白血病和非霍奇金淋巴瘤等两个适应症。诺华和CRISPR技术巨头Intellia展开了一项长达5年的研发合作计划,将 CRISPR与CAR-T更好地结合,致力于加速发展CRISPR/Cas9技术在CAR-T细胞治疗在造血干细胞中的应用。

在基因治疗过程中,特别是恶性肿瘤的方案中,只能直接载体注射到肿瘤局部。若静脉注射,载体将会很快被清除,难以达到治疗效果。科学家们设计不同的方案,改造载体的结构,构建了不同类型和特征的靶向载体。如将不同的配体组分交联到病毒载体的外膜上,构建靶向转导载体;或在载体的DNA中引入顺式调控元件,构建靶向转录载体等等。这些载体的构建有力地推动着基因治疗的发展。

病毒载体插入或者和到基因组随机位臵,有引起插入突变及激活癌基因的潜在风险。例如:过去被认为无害的AAV2腺相关病毒实际上与肝细胞癌有关,虽然AAV2 DNA插入引发癌症可能性比较少,但是也应该引起高度重视;2000年时,宾州大学有病人在基因治疗中死亡;2002 年在法国又发生先天免疫不全症 bubble boys 基因治疗临床试验发生白血病的副作用。这两件失败的案例,皆被归因于病毒载体的不安全性。

病毒载体免疫原性较强,高滴度时有明显的细胞毒性。解决方法是采用非病毒传递系统,例如阳离子多聚物载体、纳米颗粒载体、脂质体、聚乙烯亚胺等生物相容性载体将成为一套很有前景的基因传递系统。非病毒传递系统在遗传病的基因治疗方面应用显示出优势,也被越来越多用于治疗恶性肿瘤、感染性疾病以及组织工程研究。

理想的基因治疗应该能够根据病变的性质和严重程度不同,调控治疗基因的适当的表达。但是和基因治疗载体系统相比,治疗基因表达调控的研究相对滞后。可以运用连锁基因扩增等方法适当提高外源基因在细胞中的拷贝数、连接启动子或增强子等基因表达的控制信号。相信随着人类基因组学的发展,问题会得到很好的解决。

5 基因治疗的未来

基因治疗应用广泛随着基因治疗技术的发展,基因治疗已经由最初用于单基因遗传性疾病的治疗扩大到6000多种疾病,如艾滋病、乙肝、癌症、镰刀贫血症、血友病、黏多糖贮积症III型、遗传性精神病、感染性疾病、心血管疾病、自身免疫性疾病和代谢性疾病等。目前,基因治疗正在经历从罕见病到不十分罕见的疾病,最终到普通疾病的发展过程。疾病的致病机理也是从简单到复杂。随着对普通疾病治疗的推进,基因治疗技术将日益成熟并实现巨大盈利。

CRISPR为首的基因治疗技术蓬勃发展2015年12月,美国《科学》杂志公布了其评选的 2015 年十大科学突破,CRISPR 基因组编辑技术当选今年头号突破。基因治疗受到各国青睐
2015 年底,白宫再次发布《美国创新新战略》,报告中明确把包括基因治疗在内的精准医疗作为美国在医疗领域的未来发展战略。中国精准医疗计划将在2016年启动,计划2030年前投入600亿。在全世界看好精准医疗的大背景下,市场对基因治疗相关公司充满了信心。基因治疗受到资本市场关注对于基因治疗相关的医药公司,上市产品少(甚至未有产品上市),科研投入大,都影响了公司的盈利。但是丝毫不影响资本市场对其热情。基因治疗公司在股市上的表现抢眼:基因治疗龙头企业Blubirdbio上市一年半,股价涨幅高达十倍。CRISPR 发明者张峰创办的Editas Medicine公司,上市首月涨幅超过130%。除此之外,基因治疗相关公司 还积极开始IPO,2016年5月16日,Editas Medicine与Cystic Fibrosis Foundation Therapeutics(CFFT)宣布了一项为期3年、价值500万美元的合作;同日,Caribou也宣布了一项好消息,公司完成3000万美元B轮融资,新的投资者包括Anterra Capital、Heritage Group、Maverick Capital Ventures以及Pontifax AgTech,参与此轮融资的原有投资者包括F-Prime Capital Partners、诺华、Mission Bay Capital以及5 Prime Ventures。

各大世界级药企加快布局世界级国际药企通过各种方式进入基因治疗领域,例如:合作、购买、投资和独立研发。其中,GSK 基因产品Strimvelis的成功上市,也为基因治疗领域的发展树立了成功的典范:项目前期由非营利组织(意大利 Telethon 基金会) 资助完成,后期由世界级药厂GSK完成,双方签署协议,实现从研发到上市。2011年,制药巨头安进以4亿2千5百万美元的价格加上5亿7千5百万美元里程碑奖金的代价获得了Biovex开发的Imlygic,2015年10月份,FDA正式批准上市。

未来可能的市场催化剂大量临床三期实验数据将披露:截至2013年底,近2000 项基因疗法试验中,有大约5%到达了III期临床阶段,经过三年的实验周期,批量三期实验即将完成。世界级医药公司对基因治疗的投入将加快产品上市过程:以GSK 为首的世界级药企和生物公司以及研究所进行合作,从临床三期接手,完成商业转化。Spark Therapeutics公司针对RPE65遗传性视网膜营养不良的基因治疗药物计划在2016年获得美国FDA批准。诺华CAR-T疗法、Juno Therapeutics的CAR-T治疗产品 JCAR15用于成年急性淋巴细胞白血病和Kite公司的KTE-C19用于弥漫大B细胞淋巴瘤都有望在2016年提交上市申请,值得关注的是CAR-T和CRISPR技术的结合。


推荐
热点排行
一周推荐
关闭