关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

流式细胞术在高等植物研究中的应用(二)

2020.7.27

3.流式细胞术在高等植物中的应用

3.1应用于植物中的特殊性

由于植物细胞与动物细胞在结构上的差异,例如植物细胞具有细胞壁、特殊细胞器以及中央液泡等,因此流式细胞术应用于植物细胞时,在样品制备、染色、仪器的改造等方面都应适应植物细胞的上述特点。

3.1.1制备植物染色体悬液的材料

1984年De Laat和Blass用纤细单冠菊(Happus gracilis)的悬液细胞第一次对植物染色体悬液进行流式计数分析,然而核型的不稳定性却成为流式细胞术应用于计数的最大障碍。随后ConiatS]等尝试着从幼叶原生质中分离出染色体进行分析,但由于细胞同步化程度较低,这种方法没有得到广泛的应用。直到1992年Dolezelt9]~lJ用根尖分裂组织制备细胞悬液,由于大多数植物的根尖较易获得且其核型较稳定,因此利用根尖材料制备染色体悬液成为广泛使用的方法。

3.1.2细胞周期同步化和中期染色体富集

为了富集足量同步化的中期染色体,秋水仙碱常被用于抑制有丝分裂过程中纺缍丝的形成。但由于其对植物微管蛋白亲和力较低,需要使用较高的浓度,对人体会造成高毒性的危害以及在植物遗传上产生不稳定性。另外秋水仙碱也会导致染色体过于粘稠,不适用于染色体分拣等后续操作。1992年Dolezel等发现应用甲基氨草磷(APM’Apiprophos—methy1)、安磺灵(Oryzalin)、氟乐灵(Trifluralin)等人工除草剂代替秋水仙碱,在微摩级浓度时便可见显著的抗微管作用。

3.1.3染色体悬液的制备

由于植物细胞存在细胞壁,对染色体的分离造成了一定困难,通常有两种方法从同步化的细胞中释放染色体。其一,利用果胶酶和纤维素酶酶解细胞壁,然后将所获得的原生质体置于低渗缓冲液中,使得染色体得以释放;其二,将同步化根尖细胞经甲醛固定后进行机械分离从而释放染色体。相对而言,后者更加快速,并且避免了长时间的酶解,减轻了对染色体的伤害。

3.1.4仪器的改造

由于植物细胞原生质体较大且脆弱,所以应使用100—200 Ixm孔径的喷嘴,还应降低鞘液的压力以保证通过喷孔的层流条件,并能够观察到液滴的形成,同时降低液滴形成的信号频率,以使直径大的液流能准确的形成液滴。此外还需降低液滴偏转系统,以便观察液滴。

3.2在植物学研究中的应用

3.2.1细胞核分析

FCM 在细胞核分析方面的应用范围涉及DNA、RNA、蛋白质含量的分析、染色质结构分析、细胞周期分析、倍性分析等方面,是FCM在植物中应用最广泛、最基本的领域。Van’t Hof[ 0]用Hoechst33258荧光素对棉花(Gossypium hirsutum cv.MD5 1ne)纤维细胞进行染色后,以人类口腔上皮细胞的细胞核DNA含量作为标准对照,通过FCM 分析, 发现花期过后2 d的胚珠内DNA含量增加了24%。由于在细胞周期的各时相中,染色质的凝集程度不同,经酸或碱处理后,变性程度也不同,Rayburn等通过调整与DNA结合方式不同的两种染料的比例,经FCM 分析后确定玉米(Zea mays)中异染色质的含量。通过流式细胞术对细胞周期变化情况进行分析,李涛等【 2]认为交变应力作用可直接影响烟草细胞或细胞分裂的同步化,促进S期的DNA合成,有助于细胞的有丝分裂。另外,Wan 等应用流式细胞术分别对经花粉培养和花药培养所获得的椰菜(Brassica oleracea)再生植株进行DNA含量分析,认为经花药培养所得到的植株更易发生染色体倍性变异。通过对野豌豆染色体倍性差异的分析,Kathleen等【 4】应用FCM 与根尖染色体压片法,对美国农业部国家种子保藏实验室的45个标记为长柔毛野豌豆(V&ia villosa)的标本进行鉴定,发现其中的两个标本应为褐毛野豌豆 pannonica),充分说明流式细胞术在植物种质资源鉴定中快速而有效。由于FCM分析检测速度快,工作周期短,获得的信息量大,数据结果客观准确,统计学精度高,并且不使用放射性污染物质,现已成为细胞动力学研究和细胞周期分析的主要手段。

3.2.2原生质体分析

FCM 在原生质体分析方面的应用主要测定原生质体大小、细胞壁生物合成、原生质体与微生物的相互作用、原生质体融合产物分选、被膜抗原的表达等。在植物细胞研究中主要应用于分选出活的原生质体,并通过分选出来的原生质体再生出植株,其中最有意义的就是选出由原生质体融合所产生的异核体。采用流式细胞术,对酸橙(Citrus aurantium L.)叶肉原生质体和甜橙(C sineniscv.Shamouti)胚性愈伤组织原生质体电融合后再生的体细胞杂种进行分析,结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的两倍,这说明两者的原生质体已经融合。通过使用FCM 分析enod40转染的拟南芥属野生植物原生质体,Guzzo等发现导致前向角散射及细胞大小减少的基因有所表达,说明enod40对原生质体具有直接作用。用流式细胞术对荧光强度进行定量检测,还可以用来定位植物激素结合位点的空间分布,Yamazaki等用生物素化脱落酸(bioABA)来定位蚕豆气孔保卫细胞质膜的脱落酸感应位点,将位点用荧光素标记后,在保卫细胞原生质体表面可以观测到荧光微粒斑点,通过成像系统成功定位脱落酸结合位点的空间分布情况。

3.3-3染色体分析

1975年,Gray等【 B]从中国仓鼠细胞中分离出染色体,用DNA荧光染料进行染色,根据染料含量的不同用流式细胞仪将单个染色体进行分拣,开创了流式细胞遗传学。由于在染色体悬液的准备与单条染色体辨别方面存在着困难,利用流式细胞术分析与分选植物染色体一直未能取得预期的效果,但人们发现使用转座系和缺失系可以将一些无法分离的染色体从复合峰中分离出来【 。1984年,De Laat和Blass~第一次报道了用流式细胞术识别和分拣植物染色体。随后流式细胞术被证明是一个非常有用的工具,它能快速精确地检测染色体数目和结构的畸变,以及非整倍体和染色体缺失。目前已在l7个物种中利用流式细胞术对染色体进行分析与分选,包括玉米(Zea may cv.Seneca 60)、小麦(Triticumaestivum L.)、大麦(Hordeum vulgare L.)、黑麦(Secalecereale)tar231等。另外,Macas等 在1993年利用FCM对碗~_(Viciafaba L. 流式核型进行分拣,结合PCR技术对其DNA进行物理定位, 成功实现了USP基因(unknown seed protein genes)、碗豆球蛋白基因(vicilin genes)和豆球蛋白毋基因(1egumin Bjgenes)、豆球蛋白 基因(1eguminB4 genes)、假基因(pseudogenes )在相应染色体区域上的定位。流式细胞术还可以分选出指定的染色体,用来建立染色体DNA 文库,但目前在植物中仅有番茄(Lycopersicon pennellii)t~和蚕豆( 口L.) 染色体DNA文库的报道。李立家等已将流式细胞术和PCR技术相结合,应用于类玉米中抗病基因类似物序列的研究。

4展望

从1930年Caspersson和Whorellt31以细胞的计数开始,试图寻找研究细胞的新工具,到1973年BD公司与美国斯坦福大学合作,研制开发并生产了世界上第一台商用流式细胞仪FACS I,流式细胞术进入了一个空前飞速发展的时代。进入九十年代后,流式细胞术作为一门生物检测技术已经日臻完善,仪器的硬件平台也已达到稳定的技术状态。科学家和仪器制造商又纷纷将研究的焦点转向荧光染料的开发、单克隆抗体技术、细胞的制备方法以及提高电子信号的处理能力上来,以拓展日趋广泛的应用领域。

流式细胞术的强大生命力植根于生物学、医学的各个领域,正是这些日新月异、变化多样的应用项目在全球范围内推动了流式细胞术的发展。目前,利用流式细胞术不但可以对植物细胞进行计数、测量基因组大小、还能分析细胞周期、进行流式核型(染色体的DNA含量)分析、分拣染色体以及构建染色体文库等。由于FCM分选系统可提供纯度较高的特异性细胞群,因此利用流式细胞术分检纯化出的染色体在分子生物学后续研究领域有着广阔的应用前景,例如利用PCR技术进行物理图谱的绘制、FISH与PRINS遗传图谱的绘制、植物基因组的分析、染色体蛋白的免疫定位[27-3o]等。

近年来,FCM作为一种日渐成熟的技术, 已经深入到植物研究的诸多领域,给工农业生产和科学研究提供了一个强有力的工具。但是,这种技术还有一些自身的缺点,如价格昂贵、对操作人员要求高以及样品需要复杂的前处理等,这都限制了流式细胞术在植物领域中的应用。然而,随着新型多功能流式细胞仪的研制、多参数分析技术的建立以及各种分析软件的开发,我们相信流式细胞术作为一种不断完善的技术在植物学研究中将有更加广阔的应用前景。

推荐
关闭