关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

Cell发布piRNA重要发现

2016.2.29

  来自东京大学的一个研究小组鉴别出了一种叫做“Trimmer”酶,其参与生成了保护生殖细胞基因组免遭不必要遗传重写的一类小RNA。

  “跳跃基因”(又称转座子)是可以在基因组中四处移动的DNA小片段。它们可以破坏宿主基因,与癌症和其他一些疾病有关联。因此,生物体需要控制它们,尤其是在生成动物精子和卵子的生殖细胞中,以确保后代基因组的完整性。

  这项任务是由生殖细胞中一类叫做piRNAs(PIWI-interacting RNA)的小RNA分子来完成。piRNA的长度约为24-30个核苷酸(nt),其抑制了跳跃基因表达。人们认为piRNAs是通过修剪较长的前体:pre-piRNAs的一端至最终的长度而变成熟的。但却一直都不清楚负责这一修剪过程的酶。

  东京大学分子与细胞生物科学研究所的助理研究员Natsuko Izumi和教授Yukihide Tomari及同事们,鉴别出了从前未知的一种核糖核酸酶是蚕卵巢细胞中的修剪蛋白“Trimmer”。他们的数据显示,Trimmer并非单独行动,还需要一种PIWI相关蛋白:Papi一起来修剪pre-piRNAs的末端。并且,他们证实修剪pre-piRNAs对于piRNAs功能极为重要,并有可能发生在线粒体的表面。

  Tomari 说“2011年我们在蚕细胞沉淀物中发现了这种修剪活动,我们知道该酶存在于沉淀物中。但由于是不溶性的,极难鉴别出Trimmer。事实上我们几乎放弃了很多次。当我们注意到细胞的粒体碎片中有丰富的修剪活动时取得了突破。我们随后耐心地寻找了从线粒体上溶解这种修剪活动的条件。即便如此,仍然又花了三年时间来鉴别Trimmer。第二个突破是在我们认识到Trimmer与Papi形成伙伴关系时。找到了一个与Papi互作,并具有pre-piRNA修剪活性的核酸酶,我们兴奋地发现它就是我们一直在搜寻的酶。”

  从细菌到人类,生物体都必须要保护自身对抗称作为转座子的寄生遗传元件。在动物中,对抗捣乱转座子的主要防御是piRNA信号通路。2012年,诺奖得主Craig C.Mello在Cell杂志上连发两篇论文,介绍了一种小分子RNA:piRNAs在线虫生殖细胞中的新作用,从中也指出了一种由piRNAs诱导的多代表观遗传机制。

  2015年5月,来自奥地利科学院分子生物技术研究所(IMBA)的研究人员,揭示出了细胞利用来生成一类生殖细胞特异性的小分子调控RNAs——piRNAs的分子机制。他们的研究结果发表在Science杂志上。

  2015年10月,冷泉港实验室(CSHL)教授、剑桥大学CRUK剑桥学院教授Cambridge Institute领导科学家们,鉴别出Piwi系统利用一种蛋白质将细胞的基因沉默机器引导到了基因组中的正确位点,使得它能够让转座子失活,且不会干扰生物体自身的基因。研究论文发表在Science杂志上。

推荐
热点排行
一周推荐
关闭