关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

RNAi——双链RNA引起的基因敲除(1)

2020.9.07

1995年,康奈尔大学的Su Guo博士用反义RNA阻断线虫基因表达的试验中发现,反义和正义RNA都阻断了基因的表达,他们对这个结果百思不得其解。直到1998年, Andrew Fire的研究证明,在正义RNA也阻断了基因表达的试验中,真正起作用的是双链RNA[1]。这些双链RNA是体外转录正义RNA时生成的。这种双链 RNA对基因表达的阻断作用被称为RNA干预(RNA interference,RNAi)。随后的研究中发现,RNAi现象广泛存在于线虫,果蝇,斑马鱼,真菌以及植物等生物体内,这些生物体利用RNAi 来抵御病毒的感染,阻断转座子的作用。RNAi能高效特异的阻断基因的表达,在线虫,果蝇体内,RNAi能达到基因敲除的效果。在小鼠和人的体外培养细胞中利用RNAi技术也成功阻断了基因的表达,实现了细胞水平的基因敲除。近几年来RNAi的研究取得了很大进展,它被《Science》杂志评为2001 年的十大科学成就之一。2002年RNAi的研究又有了新的突破,发现它在基因表达调控中发挥重要作用,它也名列2002年《Science》杂志评的十大科学成就之首。

一. RNAi的机理

  目前RNAi的作用机理主要是在线虫,果蝇,斑马鱼等生物体内阐明的。生物体内的双链RNA可来自于 RNA病毒感染,转座子的转录产物,外源导入的基因。这些来源的双链RNA诱发了细胞内的RNAi机制,结果是病毒被清除,转座子的表达被阻断,外源导入基因表达被阻断同时,与其同源的细胞基因组中的基因表达也被阻断。

㈠ 参与RNAi反应的酶

  RNA酶Ⅲ是一种能切割双链RNA的酶,参与RNAi反应的Dicer酶是RNA酶Ⅲ家族的一个成员。 Dicer酶广泛存在于蠕虫,果蝇,真菌,植物及哺乳动物体内。它的结构中包括一个螺旋酶结构域,两个RNA酶Ⅲ结构域,一个双链RNA结合位点。在 Dicer酶的作用下,双链RNA被裂解成21到23个核苷酸的片断,称为siRNA(short interference RNA)[2],它启动了细胞内的RNAi反应。

  由于少量的双链RNA就能阻断基因的表达,并且这种效应可以传递到子代细胞中,研究者们推测细胞内存在 RNAi效应的扩增系统。研究者们发现,在真核细胞中也存在能以RNA为模板指导RNA合成的聚合酶(RNA-directed RNA polymerase,RdRP)。在RdRP的作用下,进入细胞内的双链RNA通过类似于PCR的反应过程,呈指数级的数量扩增。

㈡ RNAi的反应过程

  双链RNA进入细胞后,一方面在Dicer酶的作用下被裂解成siRNA,另一方面在RdRP的作用下自身扩增后,再被Dicer酶裂解成siRNA。SiRNA的双链解开变成单链,并和某些蛋白形成复合物,Argonaute2是目前唯一已知的参与复合物形成的蛋白[3]。此复合物同与siRNA互补的mRNA结合,一方面使mRNA被RNA酶裂解,另一方面以SiRNA作为引物,以mRNA为模板,在 RdRP作用下合成出mRNA的互补链[4,5]。结果mRNA也变成了双链RNA,它在Dicer酶的作用下也被裂解成siRNA。这些新生成的 siRNA也具有诱发RNAi的作用,通过这个聚合酶链式反应,细胞内的siRNA大大增加,显著增加了对基因表达的抑制。从21到23个核苷酸的 siRNA到几百个核苷酸的双链RNA都能诱发RNAi,但长的双链RNA阻断基因表达的效果明显强于短的双链RNA。

二. 哺乳动物细胞中的RNAi

  在小鼠的胚胎细胞中也存在RNAi,将727个碱基对的双链RNA转入小鼠的畸胎瘤细胞,诱发了细胞内的RNAi机制,并抑制了报告基因的表达[6]。但大于30个核苷酸的双链RNA进入哺乳动物的成体细胞后,会非特异的阻断基因的表达。这是由于当长的双链RNA进入哺乳动物成体细胞后,细胞内的病毒防御机制被激活。细胞内干扰素产生增加,蛋白激酶PKR激活,使转录因子E2F被抑制,非特异的阻断基因的转录,并诱导细胞凋亡。另一方面,RNA酶L(RNase L)被激活,产生非特异的mRNA降解。而未分化的胚胎细胞中,上述防御病毒的机制存在缺陷,因而 双链RNA能特异的阻断基因的表达。

  由于大于30个核苷酸的双链RNA非特异的阻断哺乳动物成体细胞中的基因表达,RNAi在哺乳动物成体细胞中的应用受到限制。但Tuschl等人的研究工作克服了这一障碍。他们发现,21个核苷酸的双链RNA能够诱发哺乳动物细胞内的RNAi机制,同时不会激活细胞内的干扰素 [7]。他们合成了以荧光素酶的mRNA为靶分子的21个核苷酸的双链RNA,将它和荧光素酶的表达质粒用脂质体共转染到NIH3T3,COS- 7,Hela S3,293细胞中,报告基因的表达被抑制了90%。由于报告基因得到的结果不能完全说明细胞内的情况,他们又合成了细胞内源性基因laminA/C为靶目标的双链RNA,这个双链RNA也特异的抑制了laminA/C的表达,抑制率达到90%以上。

  根据一条mRNA的不同靶位点可以合成出许多条双链RNA,研究发现这些双链RNA的作用差别很大 [8]。其中转录起始位点,编码区的3’末端为靶点的双链RNA的效果很差。而GC含量低的区域似乎双链RNA的效果好。线虫内的siRNA可以作为引物,以靶mRNA为模板,在RDRP及Dicer的作用下,大量扩增siRNA。将siRNA的3’末端标记上FITC使它丧失引物的作用,在将其转入哺乳动物细胞内,它抑制靶基因的作用并没有受到影响。因而研究者推测,哺乳动物细胞内不存在象线虫那样的依赖于RDRP的RNAi放大机制。在哺乳动物细胞中瞬时转染dsRNA后,dsRNA的作用只维持了三天。而将表达dsRNA的载体转入哺乳动物细胞后筛选出的稳定表达株中,在转染八周后dsRNA仍能有效的抑制靶基因的表达[9]。利用载体表达出的dsRNA为发夹结构,其环状部位的核苷酸的序列和数目对dsRNA的作用都有影响,研究者发现9个核苷酸比5个或7个核苷酸的效果好[9]。DsRNA的作用很强,在1nM时就能有效的阻断靶基因的表达。RNAi还具有很高的特异性。19个核苷酸的 dsRNA几乎可以完全抑制基因的表达,而将其中的一个核苷酸突变掉后,它对基因的抑制作用就消失了[9],这对dsRNA的应用是非常重要的,这可以避免dsRNA降解与靶mRNA同家族的其他的mRNA。

三. 双链RNA的构建

  双链RNA可先在体外构建好,然后转染细胞。在体外构建双链RNA时,分别在体外转录出正义和反义 RNA,再将两者退火,形成双链RNA。体外合成的双链RNA可以用脂质体转入细胞中。但有些细胞脂质体转移效果差,转移到细胞内的双链RNA半衰期短。而先在体外构建能表达双链RNA的载体,再将载体转移到细胞内在细胞内合成出双链RNA,不但能增加有效转染细胞的种类,而且在长期稳定表达载体的细胞株中,双链RNA能够长期发挥阻断基因的作用。


推荐
关闭