关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

hERG K+通道电流和药理学特性-Molecular Devices IonFlux(二)

2020.6.16

实验刺激方案

 

IonFlux记录板的每个孔分别加入250 μL内液、化合物、以及细胞悬液。IonFlux记录板的规格和加液处理与标准的多孔板完全一致,主要区别之处在于记录板的底部加装了互相独立的微流体孔道网络用于连接、运送试验孔中不同的液体。在溶液添加结束后,所有气压控制步骤全部通过机器自身来完成,包括细胞捕获、形成封接、化合物添加,以及冲洗等。

 

IonFlux-16系统包含了16个独立的放大器。编辑好的电压刺激命令同步作用于所有的16个记录通道。系统采用20个细胞集合记录的模式,即一个放大器对应的记录位点中同时记录20个细胞的电流结果并取其总和值作为最终的数据,从而大大提高数据的一致性以及实验成功率。在本次hERG实验中,细胞被钳制在-80mV,且超极化至-100mV以监控串联电阻的变化。hERG在+50mV(800ms)被激活,然后外向尾电流在-50mV时被记录,激活前-50mV的刺激将作为基线电流用于最终结果的分析。-50mV之后继续超极化至-120mV(800ms)主要用于hERG通道从失活过程的恢复(见图2)。在研究电压-电流关系(IV反应)的实验中,采用了从-50mV至60mV 12个10mV步阶激活刺激命令,或者从-120mV至+50mV的18个10mV的去极化步阶刺激命令(见图3)。电压刺激命令每隔6秒运行一次。漏电流通过在线的两组小脉冲来补偿(-80mV至-100mV,50ms/50ms)。采样频率为5kHz,实验在室温中进行(20-23°C)。

 

在药理学特性研究中,hERG电流稳定后(~5min),同一个化合物按照浓度从低到高(包括0.1-0.3%DMSO溶液的阴性对照)依次添加至细胞记录位点,持续3~5分钟。加样方式包括依次累加给药刺激或每个浓度间隔外液冲洗两种方式。

全细胞 hERG 离子通道电流示例

 

图2显示了电压刺激方波(上图)和典型的室温下hERG离子通道实时电流软件截屏图(下图)。图中16个放大器对应的16个通道的hERG电流结果在展现在一张图中,以不同颜色表示。漏电流补偿通过机器自动完成。电阻和电流的幅度(I) 通过标记的游标(cursor)位置(粉色和亮绿色用于电阻的计算,绿色和蓝色用于电流计算)进行统计计算。

 

Figure 3. 室温下记录的hERG 电流的电压-电流关系。细胞钳制在-80 mV。(A) 显示了一个典型的不同激活步阶电压下记录到的hERG 电流。激活电流的IV 点线图和-50mV 尾电流的电压激活曲线图分别展现于(C)和(D)。全部hERG 细胞全激活的电流图和IV 点线图分别显示在 (B) 和(E)。 

 

hERG 电流的电压依赖性记录

 

室温下记录的hERG 电流的电压-电流关系显示于图3。细胞钳制在-80 mV。图3 的A 图显示了一个典型的不同激活步阶电压下记录到的hERG 电流。 细胞从–60 mV 至 60 mV 逐渐去极化,持续时间800 ms,以激活hERG 电流, 然后再复极化至-50 mV 以记录外向尾电流。激活电流的IV 点线图和-50mV 尾电流的电压激活曲线图分别展现于(C)图和(D)图。Boltzmann 方程拟合的电压激活曲线得到的半数最大电流的激活电压是–6±0.3mV(D 图)。此数据结果与之前发表的全自动膜片钳结果一致(PatchX- press, Guo & Guthrie, 2005),且与23 °C 条件下记录的手动膜片钳结果相比较大约偏移了8mV左右(-14mV, Zhou et al., 1998)。全部hERG 细胞全激活的电流图和IV 点线图分别显示在 (B 图) 和(E 图),电流在去极化至50mV 的步阶刺激中被激活,然后复极化至不同电压水平。尾电流-94 mV 时被翻转;在更副的电压水平下电流变为内向。

 

Figure 4. 长时间hERG 记录和两种化合物添加方式。实验软件截屏图显示了两个化合物的依照浓度梯度累积给药,以及随后每个浓度间隔外液冲洗后再给药的方式。


推荐
关闭