关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

揭示Cd在土壤金属氧化物表面吸附固定分子机制

2019.7.02

  吸附是Cd在土壤中最基本的环境化学行为,而土壤中金属氧化物对Cd具有较强的吸附固定能力,尽管过去开展了大量的工作,但Cd在黏土矿物特别是金属氧化物表面的吸附固定分子机制不是很清楚。中国科学院南京土壤研究所研究员王玉军团队结合EXAFS和量子化学计算等分子环境手段,较为系统地研究了Cd在土壤金属氧化物表面的吸附固定分子机制。

  研究发现Cd在氧化铝表面除了形成表面络合物外,还会形成氢氧化镉多聚物,后者会逐渐转化为碳酸镉。XRD、HR-TEM和EXAFS结果表明,Cd在氧化铝表面能形成Cd-Al层状双金属羟基化合物(LDH)沉淀(图1)。Cd(II)在含铝矿物表面形成LDH沉淀这一现象十分有趣,因为这一现象多发于半径和Al(III)相似的阳离子,对于半径比Al(III)大得多的阳离子如Cd(II),则从未被发现。该研究结果表明吸附-沉淀过程控制着Cd在含铝矿物表面的固定,建议在预测镉的环境行为、评估镉的环境风险时应考虑镉的沉淀过程。此外,含铝矿物表面形成热稳定的Cd-Al LDH沉淀也为镉污染场地土壤修复提供全新视角。相关结果发表于Environment International (2019, 126: 234-241)。

  土壤中的氧化锰因具有大量的表面缺陷和负电荷,对镉亦具有很强的固定能力。然而,在氧化-还原交替地带,常会有一些还原性物质如Mn(II)和Fe(II)与氧化锰共存,这些还原性物质会改变氧化锰的性质,进而影响氧化锰对Cd(II)的固定机制。研究发现,Mn(II)的加入抑制了Cd(II)的吸附并使Cd(II)从氧化锰的空穴位转移到边缘位,形成双齿双核的吸附构型;当环境条件偏碱且Mn(II)浓度较高时,会引发Cd(II)-Mn(III)沉淀的产生(图2)。而当Fe(II)加入到氧化锰中时,Fe(II)被迅速氧化,形成大量的水铁矿覆盖在氧化锰表面,堵塞氧化锰的吸附位点,并改变Cd(II)的吸附构型(图3)。研究结果为揭示农田土壤中Cd形态转化提供了理论支撑,为发展锰基修复剂提供了技术支撑。相关结果发表于Chemical Engineering Journal (2018, 353, 167-175) 和Environment International (2019, 130: 104932)。


推荐
热点排行
一周推荐
关闭