关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

超声技术在有机物降解中的应用

2020.7.06

前言

随着边缘学科声化学的建立和超声技术的发展,超声技术用于水处理的研究愈来愈受到人们重视。80年代末开始,英国、法国、比利时、美国、加拿大、德国、日本、韩国、印度等国有关专家纷纷致力于超声降解水中有机物的研究。我国大陆和台湾省的一些大学也开始了这方面研究。本课题组于1996年开始,研究了US以及US-UV和US-H2O2技术降解水中苯酚、氯仿、四氯化碳、4一氯 酚、氯苯、丙酸、丁酸、戊酸的研究[1,2]。目前,超声技术用于水处理的研究主要还限于实验室范围。如何将实验室研究向应用方面发展是今后研究的重点。

 

限于篇幅,本文仅根据1996年以来的研究成果,重点介绍超声降解水中有机物的基本原理、不同物化性质有机物的降解效果及其主要影响因素和US―UV、 US―H2O2联用技术的效果。

 

1 超声降解有机物的基本原理

超声降解有机物是水处理中高级氧化(AOPs)技术的一种。但它又与其它AOPs技术有所区别。即在超声空化过程中,除了能产生具有强氧化能力的自由基以外,还存在高温热解作用,还可能存在瞬态超临界水(SCW)加速氧化。超声空化是指液体中微小泡核在超声波作用下被激化,表现为泡核的振荡、生长、收缩、崩溃等一系列动力学过程。空化泡瞬间崩溃时会产生高温(5000℃以上)和高压(50~1OOMPa)[3]。空化泡内(气相)的水蒸汽在高温、高压下裂解为?0H、?H自由基以及次级自由基?OOH等。部分自由基又会结合形成H2O2,空化泡崩溃产生的冲击波和射流使这些自由基和H2O2进入本体溶液。声化学反应如图1所示。在空化泡内(气相),有机物降解主要依靠高温热解和较高浓度的自由基氧化:在气―液界面的液壳区内,有机物被自由基、H202及SCW氧化并部分被热解;在本体溶液中,有机物主要被自由基和H2O2氧化。图1只是大体的反应位置,实际声化学反应比图1所示要复杂得多。对于不同物化性质的有机物质,主要作用机理也会有所不同,见后文。

 

2 不同物化性质有机物超声降解效果

由于超声降解有机物的机理不仅有氧化作用,还有热解作用,因此,有机物的挥发性和被氧化性对超声降解效果影响很大。图2表示三种类型有机物――易挥发有机物(三氯甲烷)、挥发性差但易氧化有机物(苯酚)、非挥发且难氧化有机物(三氯乙酸)超声降解效果的比较[1,2]。由图2可知:(1)挥发性三氯甲烷极易被超声降解,而且降解速率受起始浓度影响很小,在10min内,降解率均达到95%以上;(2)挥发性较差但易被氧化的苯酚,超声降解效果较差,而且降解率受到起始浓度影响较大;(3)非挥发难氧化三氯乙酸超声降解效果最差。图3为氯苯和4-氯酚超声降解效果对比。由图3可知,虽然超声频率和声强与图2不同,但所反映的超声降解规律与图2相似,即较易挥发的氯苯降解速率远大于难挥发的4―氯酚。

 

挥发性有机物之所以易被超声降解,是由于它易于进入空化泡内,从而在空化泡崩溃时所产生的高温下热解。自由基氧化作用虽然存在,但由于自由基产率较低,故氧化作用不明显。而难挥发有机物不易进入空化泡内,其降解机理主要是自由基氧化,热解作用较小,故在自由基产率较低情况下,降解速率也较低。

 

3 自由基清除剂对不同物化性质有机物超声降解效果的影响

正丁醇是有效的自由基清除剂,水中C1-和HCO3-对自由基也有清除作用。图4为正丁醇对氯苯降解效果的影响[2],图5为正丁醇对4―氯酚降解效果的影响[2];图6为Cl-和HCO3-对氯酚降解效果的影响[1]。

由图4~图6可知,对于氯苯、氯仿两种挥发性有物,自由基清除剂对超声降解效果几乎无影响,说明挥发性物质的降解主要是高温热解,自由基氧化作用极微。自由基清除剂对难挥发的4―氯酚降解效果影响很大,正丁醇投量增加,降解率下降。例如:经240min超声处理,不加正丁醇时,4-氯酚降解率为51.8%,正丁醇投量为2.5mmol/L时,4-氯酚降解率降至9.6%,说明难挥发的4-氯酚的超声降解主要是自由基氧化的结果。

 

4 pH值对不同物化性质有机物超声降解效果的影响

pH值影响水中有机物存在形态。当水PH值低时,水中有机物以分子形态为主;当pH值高时水中有机物以离子形态为主。分子容易接近空化泡的气液界面,继而蒸发到气泡中进行热解和自由基反应;离子则不易接近气液截面,也很难进入空化泡内,故有机物降解主要靠本体溶液中自由基氧化。图7为pH值对难挥发的4-氯酚超声降解效果的影响[2]。由图7可知,经240min超声处理,pH值分别2.4、6.5和11.0时,4-氯酚降解率分别为56.7%、51.8%和41.0%,说明pH值对不挥发或难挥发有机物的超产降解效果影响较大。在低PH值下,4―氯酚的降解除了自由基氧化外;还存在部分分子态4―氯酚被高温热解,故超声降解效果较好。

图8为pH值对易挥发氯苯的超声降解效果的影响[2]。由图8可知,pH值对易挥发有机物降解效果影响很小。

 

5 超声和其它技术联用

如果超声所产生的自由基较少时,对不挥发或难挥发有机物的降解效果就有限。为此,可将超声技术与其它技术联用,提高有机物降解效果。两种不同技术联用,往往可产生互补作用。

 

5.1 超声紫外联用技术(US-UV)

采用单独US、单独UV和US-UV联用技术处理挥发性差的苯酚效果见图9和表1[1]。由图9可知,由于US辐照所产生的自由基(?OH)少,故单独US对苯酚的降解效果不如W。从苯酚消失率看,三种技术降解效果顺序为:US―UV>UV>US。但从表1可知,UV降解苯酚时,TOC的去除效果很差,80min的TOC去除率仍为零。TOC去除率表示有机物矿化程度,能更好地反映处理效果。苯酚的消失率小于TOC去除率,表明苯酚在降解过程中产生一系列中间产物,如邻苯二酚、对苯二酚、间苯二酚、苯醌及苯环断裂后形成脂肪酸等,W辐照苯酚时,往往只能将苯酚降解为中间产物,而不能进一步矿化,故苯酚消失率虽较高,但TOC去除率很低。US降解苯酚虽然也生成中间产物,但由于US的降解是多种作用相结合,包括自由基、超临界水氧化和部分高温热解,故可使部分中间产物达到矿化程度。US―W对TOC去除率能明显提高,其原因可能是US先产生的?0H有部分又会结合成H2O2。H2O2经UV辐照后复活成?0U,提高了水中?0H浓度,从而提高了TOC去除率。故从TOC去除率而言,US-UV技术存在着US和UV的协同作用。

 

5.2 超声―过氧化氢联用技术(US―H202)

采用单独US、单独H2O2和US-H2O2联用技术处理4-氯酚的效果见表2[2]。由表2可知,US―H2O2无论是对4-氯酚或TOC而言,其去除率都大于单独US和单独H2O2去除率的简单叠加,说明US―H2O2技术明显具有US和H2O2的协同作用。协同作用机理可能是:(1)在IJS作用下,4-氯酚分子键断裂,更易被H2O2氧化;(2)单独US作用所产生的自由基(?OH)较少,加入比02后,自由基浓度大大增加;(3)US所产生的射流有助于自由基和H2O2更均匀地分散在水中,有利于4-氯酚降解。

 

不过,US和其它技术联用,对不同物质,协同作用程度也有不同。例如,US―UV降解三氯乙酸时,三氯乙酸降解率和TOC去除率均高于单独US和单独UV的去除率,但小于两种技术单独去除率之和。因此,US和其他技术联用,作用机理是十分复杂的,还有待深入研究。

 

6 结论

1)超声降解有机物的作用机理主要是:(1)自由基和过氧化氢氧化:(2)超临界水氧化;(3)高温热解。

2)对易挥发有机物(如CHCl3等),超声降解效果好,降解速度快,而且往往能被彻底降解。其降解机理主要是高温热解,自由基氧化也存在但不占优势。对于非挥发性或挥发性差的有机物,超声降解效果较差。其降解效果视自由基产率、有机物挥发性和氧化性能而异。其降解机理,主要是自由基氧化,高温热解作用极微,而且当自由基产率较低时,非挥发性物质往往降解不彻底,产生中间产物,故有机物消失速率往往高于TOC去除率。

3)对于易挥发性有机物,超声降解时不受水中自由基清除剂和共存离子(Cl-,HCO3-等)干扰;对于挥发性差或非挥发性有机物,自由基清除剂和共存离子会显著降低有机物降解效果。

4)水的pH值对易挥发有机物的降解效果影响很小,但对挥发性差有机物的降解效果影响较大。在低PH值下,难挥发性有机物降解效果较好;在高PH值,降解效果较差。

5)超声和其它技术(紫外,H2O2等)联用,会显著提高有机物降解效果,通常情况下具有两种技术的协同效应。但对不同物质,协同效应有所不同。


推荐
关闭