关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

酶促反应动力学

2019.12.11

一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为:

k1                   k2           E    +    S    -------------     ES   --------  E     +     P                             k-1          酶       底物             酶-底物复合物            酶         产物

根据公式进行推导,反应速率(V0或v)与底物浓度[S]、酶浓度[E]和产物浓度[P]的关系如下:

式中Vmax为最大反应速率。这一公式与根据快速平衡学说推导的米-曼氏原始方程形式相同,区别在于用米氏常数Km取代了复合物ES的解离常数Ks,因此仍称为米-曼氏方程。

二、Km与Vmax(一)Km 若v=0.5Vmax,则Km=[S],可见Km值等于酶促反应的初速率为最大速率Vmax一半时的底物浓度。Km值一般在10-6~10-2mol/L之间。Km只与酶的性质有关,而与酶的浓度无关。Km是酶的特征性常数之一,在临床酶学分析中有重要意义。

1. 1/Km可近似地表示酶对底物的亲和力的大小,Km值越小,表示酶与底物的亲和力越大,反之亦然。

2. 如果一个酶有几种底物,则对每一种底物各有一个特定的 Km值,其中Km值最小的底物大都是该酶的最适底物或天然底物。

3.如已知酶的Km,可计算某一底物浓度时反应速率v和最大速率Vmax的比值,并可推知酶的活性中心被底物饱和的分数。同样,如要求v和Vmax有一定的百分比,也可算出所需底物浓度为其Km的多少倍。

4.利用工具酶来测定体液中某一成分的浓度或某一酶的催化活性浓度时,可根据米-曼氏方程或其衍变方程式来计算工具酶的用量。

5.测定Km值可鉴别不同来源但催化相同反应的酶是同一种酶或是同工酶。

6.如一个酶催化正逆两个方向,测定正逆两个方向底物的Km及底物浓度,可大体推测该酶在体内催化反应的方向及其催化效率。

7.在代谢酶系中,当一组酶催化连续的代谢反应时,如已知各酶的Km及其相应底物的浓度,有助于寻找代谢的限速步骤。一般Km值最大的酶所催化的反应为该酶系的限速步骤。

(二)VmaxVmax表示在一定酶量下的最大反应速率,即酶完全被底物饱和时的反应速度,与酶浓度呈正比。

在酶的浓度不变时,对于特定底物而言,Vmax也是一个常数。如果酶的总浓度已知,可从Vmax计算酶的催化常数,即转换数Kcat。计算公式为Vmax=Kcat[E0]。Kcat表示单位时间内每个酶分子将底物分子转换成产物的最大值。Kcat越大,表示酶的催化效率越高。

对于多数酶而言,Kcat在每1 s-1~104 s-1范围内。Kcat/Km比值不仅可用来衡量酶对底物的专一性,还可用于检验酶催化反应是否达到恒态或平衡态。

(三)Km和Vmax的测定将米-曼氏方程经过演变而转换成直线方程,然后根据直线的斜率及用外推法或用计算机以最小二乘法处理实验数据即可得到Km和Vmax。其中以Lineweaver-Burk双倒数作图最常用。将米-曼氏方程进行倒数处理,得下列方程:

以1/V0为纵坐标,1/[S]为横坐标作图可得一直线。纵轴截距为1/Vmax,斜率为Km/Vmax,横轴截距为-1/Km。Lineweaver-Burk双倒数作图除用于求取Km和Vmax外,还可用于判断可逆性抑制反应的性质。

此外还有Woolf作图、Eadie-Hofstee作图和Hanes作图等,实际应用较少。


推荐
关闭