E34 润滑油 标准查询与下载



共找到 1582 条与 润滑油 相关的标准,共 106

5.1 The composition of a lubricating oil has a large effect on the characteristics and uses of the oil. The determination of saturates, aromatics and polars is a key analysis of this composition. The characterization of the composition of lubricating oils is important in determining their interchangeability for use in blending etcetera. 1.1 This test method covers the determination of total aromatics and total saturates in additive-free lube basestocks using high performance liquid chromatography (HPLC) with refractive index (RI) detection. This test method is applicable to samples containing total aromatics in the concentration range of 0.2 to 46 mass8201;%. 1.1.1 Polar compounds, if present, are combined with the total aromatics. Precision was determined for basestocks with polars content lt; 1.0 mass8201;%. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determination of Total Aromatics and Total Saturates in Lube Basestocks by High Performance Liquid Chromatography (HPLC) with Refractive Index Detection

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This is an accelerated engine oil test, performed in a standardized, calibrated, stationary single-cylinder diesel engine that gives a measure of (1) piston and ring groove deposit forming tendency, (2) piston, ring and liner scuffing and (3) oil consumption. The test is used in the establishment of diesel engine oil specification requirements as cited in Specification D4485 for appropriate API Performance Category C oils (API 1509). The test method can also be used in diesel engine oil development. 1.1 This test method covers and is required to evaluate the performance of engine oils intended to satisfy certain American Petroleum Institute (API) C service categories (included in Specification D4485). It is performed in a laboratory using a standardized high-speed, single-cylinder diesel engine.4 Piston and ring groove deposit-forming tendency and oil consumption is measured. The piston, the rings, and the liner are also examined for distress and the rings for mobility. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exceptions—Where there is no direct SI equivalent such as screw threads, National Pipe Threads/diameters, tubing size, or where there is a sole source supply equipment specification. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Being an engine test method, this standard does have definite hazards that require safe practices (see Appendix X2 on Safety). 1.4 The following is the Table of Contents:   Section Scope 1 Referenced Documents 2 Terminology

Standard Test Method for Evaluation of Engine Oils in a High Speed, Single-Cylinder Diesel Enginemdash;Caterpillar 1P Test Procedure

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method was developed to evaluate the viscosity increase and soot concentration (loading) performance of engine oils in turbocharged and intercooled four-cycle diesel engines equipped with EGR. Obtain results from used oil analysis. 5.2 The test method can be used for engine oil specification acceptance when all details of the procedure are followed. 1.1  This test method covers an engine test procedure for evaluating diesel engine oils for performance characteristics in a diesel engine equipped with exhaust gas recirculation, including viscosity increase and soot concentrations (loading).2 This test method is commonly referred to as the Mack T-11. 1.1.1 This test method also provides the procedure for running an abbreviated length test, which is commonly referred to as the T-11A. The procedures for the T-11A are identical to the T-11 with the exception of the items specifically listed in Annex A8. Additionally, the procedure modifications listed in Annex A8 refer to the corresponding section of the T-11 procedure. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exceptions—Where there is no direct SI equivalent such as screw threads, National Pipe Threads/diameters, tubing size, or where there is a sole source supply equipment specification. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Annex A6 for specific safety hazards.

Standard Test Method for Evaluation of Diesel Engine Oils in the T-11 Exhaust Gas Recirculation Diesel Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method was developed to evaluate the wear performance of engine oils in turbocharged and intercooled four-cycle diesel engines equipped with EGR. Obtain results from used oil analysis and component measurements before and after the test. 5.2 The test method may be used for engine oil specification acceptance when all details of the procedure are followed. 1.1 This test method is commonly referred to as the Mack T-10.2 This test method covers an engine test procedure for evaluating diesel engine oils for performance characteristics, including lead corrosion and wear of piston rings and cylinder liners. 1.2 This test method also provides the procedure for running an abbreviated length test, which is commonly referred to as the T-10A. The procedures for the T-10 and T-10A are identical with the exception of the items specifically listed in Annex A8. Additionally, the procedure modifications listed in Annex A8 refer to the corresponding section of the T-10 procedure. 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Annex A7 for specific Safety Hazards.

Standard Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method covers the rapid determination of 22 elements in used and unused lubricating oils and base oils, and it provides rapid screening of used oils for indications of wear. Test times approximate a few minutes per test specimen, and detectability for most elements is in the low mg/kg range. In addition, this test method covers a wide variety of metals in virgin and re-refined base oils. Twenty-two elements can be determined rapidly, with test times approximating several minutes per test specimen. 5.2 When the predominant source of additive elements in used lubricating oils is the additive package, significant differences between the concentrations of the additive elements and their respective specifications can indicate that the incorrect oil is being used. The concentrations of wear metals can be indicative of abnormal wear if there are baseline concentration data for comparison. A marked increase in boron, sodium, or potassium levels can be indicative of contamination as a result of coolant leakage in the equipment. This test method can be used to monitor equipment condition and define when corrective actions are needed. 5.2.1 The significance of metal analysis in used lubricating oils is tabulated in Table 4. 5.3 The concentrations of metals in re-refined base oils can be indicative of the efficiency of the re-refining process. This test method can be used to determine if the base oil meets specifications with respect to metal content. 1.1 This test method covers the determination of additive elements, wear metals, and contaminants in used and unused lubricating oils and base oils by inductively coupled plasma atomic emission spectrometry (ICP-AES). The specific elements are listed in Table 1. 1.2 This test method covers the determination of selected elements, listed in Table 1, in re-refined and virgin base oils. 1.3 For analysis of any element using wavelengths below 190 nm, a vacuum or inert-gas optical path is required. The determination of sodium and potassium is not possible on some instruments having a limited spectral range. 1.4 This test method uses oil-soluble metals for calibration and does not purport to quantitatively determine insoluble particulates. Analytical results are particle size dependent, and low results are obtained for particles larger than a few micrometers.2 1.5 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional, appropriate dilutions and with no degradation of precision. 1.6 For elements other than calcium, sulfur, and zinc, the low limits listed in Table 2 and Table 3 were estimated to be ten times the repeatability standard deviation. For calcium, sulfur, and zinc, the low limits represent the lowest concentrations tested in the interlaboratory study. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.8 This standard does not purport to address all......

Standard Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry 40;ICP-AES41;

ICS
71.040.50 (Physicochemical methods of analysis); 7
CCS
E34
发布
2013
实施

5.1 This test method is used to evaluate automotive engine oils for protection of engines against bearing weight loss. 5.2 This test method is also used to evaluate the SIG capabilities of multiviscosity-graded oils. 5.3 Correlation of test results with those obtained in automotive service has not been established. 5.4 Use—The Sequence VIII test method is useful for engine oil specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following: 5.4.1 Specification D4485. 5.4.2 API Publication 1509 Engine Oil Licensing and Certification System.6 5.4.3 SAE Classification J304. 1.1 This test method covers the evaluation of automotive engine oils (SAE grades 0W, 5W, 10W, 20, 30, 40, and 50, and multi-viscosity grades) intended for use in spark-ignition gasoline engines. The test procedure is conducted using a carbureted, spark-ignition Cooperative Lubrication Research (CLR) Oil Test Engine (also referred to as the Sequence VIII test engine in this test method) run on unleaded fuel. An oil is evaluated for its ability to protect the engine and the oil from deterioration under high-temperature and severe service conditions. The test method can also be used to evaluate the viscosity stability of multi-viscosity-graded oils. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485. 1.2 Correlation of test results with those obtained in automotive service has not been established. Furthermore, the results obtained in this test are not necessarily indicative of results that will be obtained in a full-scale automotive spark-ignition or compression-ignition engine, or in an engine operated under conditions different from those of the test. The test can be used to compare one oil with another. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3.1 Exceptions—The values stated in inch-pounds for certain tube measurements, screw thread specifications, and sole source supply equipment are to be regarded as standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are provided throughout this test method.

Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine)

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method was developed to evaluate automotive engine oils for protection against oil thickening and engine wear during moderately high-speed, high-temperature service. 5.2 The increase in oil viscosity obtained in this test indicates the tendency of an oil to thicken because of oxidation. In automotive service, such thickening can cause oil pump starvation and resultant catastrophic engine failures. 5.3 The deposit ratings for an oil indicate the tendency for the formation of deposits throughout the engine, including those that can cause sticking of the piston rings in their grooves. This can be involved in the loss of compression pressures in the engine. 5.4 The camshaft and lifter wear values obtained in this test provide a measure of the anti-wear quality of an oil under conditions of high unit pressure mechanical contact. 5.5 The test method was developed to correlate with oils of known good and poor protection against oil thickening and engine wear. Specially formulated oils that produce less than desirable results with unleaded fuels were also used during the development of this test. 5.6 The Sequence IIIG engine oil test has replaced the Sequence IIIF test and can be used in specifications and classifications of engine lubricating oils, such as the following: 5.6.1 Specification D4485, 5.6.2 Military Specification MIL-PRF-2104, and 5.6.3 SAE Classification J183. 1.1 This test method covers an engine test procedure for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, as well as engine wear. Such oils include both single viscosity grade and multiviscosity grade oils that are used in both spark-ignition, gasoline-fueled engines, as well as in diesel engines. 1.1.1 Additionally, with nonmandatory supplemental requirements, a IIIGA Test (Mini Rotary Viscometer and Cold Cranking Simulator measurements), a IIIGVS Test (EOT viscosity increase measurement), or a IIIGB Test (phosphorous retention measurement) can be conducted. These supplemental test procedures are contained in Appendixes Appendix X1, Appendix X2, and Appendix X3, respectively.Note 1—Companion test methods used to evaluate engine oil performance for specification requirements are discussed in SAE J304. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exception—Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, and tubing size. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test simulates a type of severe field service in which corrosion-promoting moisture in the form of condensed water vapor accumulates in the axle assembly. This may happen as a result of volume expansion and contraction of the axle lubricant and the accompanied breathing in of moisture-laden air through the axle vent. The test screens lubricants for their ability to prevent the expected corrosion. 5.2 The test method described in this standard may be used by any properly equipped laboratory, without the assistance of anyone not associated with that laboratory. However, the ASTM Test Monitoring Center (TMC) provides reference oils and an assessment of the test results obtained on those oils by the laboratory (see Annex A7). By this means, the laboratory will know whether their use of the test method gives results statistically similar to those obtained by other laboratories. Furthermore, various agencies require that a laboratory utilize the TMC services in seeking qualification of oils against specifications. For example, the U.S. Army imposes such a requirement in connection with several Army lubricating oil specifications. 5.3 The L-33-1 test procedure is used or referred to in the following documents: ASTM Publication STP-512A,8 SAE J308, SAE J2360, and U.S. Military Specification MIL-PRF-2105E. 1.1 This test method covers a test procedure for evaluating the rust and corrosion inhibiting properties of a gear lubricant while subjected to water contamination and elevated temperature in a bench-mounted hypoid differential housing assembly.2 This test method is commonly referred to as the L-33-1 test. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.2.1 Exceptions—(1) where there is no direct SI equivalent such as screw threads and national pipe threads/diameters, and (2) the values stated in SI units are to be regarded as standard for the definitions in 12.2, and for SI units where there are no direct inch-pounds equivalent units. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Evaluation of Moisture Corrosion Resistance of Automotive Gear Lubricants

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

4.1 The quantitative determination of hindered phenol antioxidants in a new turbine oil measures the amount of this material that has been added to the oil as protection against oxidation. Beside phenols, turbine oils can be formulated with other antioxidants such as amines which can extend the oil life. In used oil, the determination measures the amount of original (phenolic) antioxidant remaining after oxidation have reduced its initial concentration. This test method is not designed or intended to detect all of the antioxidant intermediates formed during the thermal and oxidative stressing of the oils, which are recognized as having some contribution to the remaining useful life of the used or in-service oil. Nor does it measure the overall stability of an oil, which is determined by the total contribution of all species present. Before making final judgment on the remaining useful life of the used oil, which might result in the replacement of the oil reservoir, it is advised to perform additional analytical techniques (in accordance with Practices D6224 and D4378), having the capability of measuring remaining oxidative life of the used oil. 4.1.1 This test method is applicable to non-zinc turbine oils. These are refined mineral oils containing rust and oxidation inhibitors, but not antiwear additives. This test method has not yet been established with sufficient precision for antiwear oils. 4.2 This test method is also suitable for manufacturing control and specification acceptance. 4.3 When a voltammetric analysis is obtained for a turbine oil inhibited with a typical hindered phenol antioxidant, there is an increase in the current of the produced voltammogram between 3-5 s (or 0.3 to 0.6 V applied voltage) (see Note 1) in the basic test solution (Fig. 1—x-axis 1 second8201;=8201;0.1 V). Hindered phenol antioxidants detected by voltammetric analysis include, but are not limited to, 2,6-di-tert-butyl-4-methylphenol; 2,6-di-tert-butylphenol and 4,4'-methylenebis(2,6-di-tert-butylphenol).Note 1—Voltages listed with respect to reference electrode. The voltammograms shown in Figs. 1 and 2 were obtained with a platinum reference electrode and a voltage scan rate of 0.1 V/s. Note 1—x-axis8201;=8201;time (seconds) and y-axis is current (arbitrary units). Top line in Fig. 2 is fresh oil, and lower line is used oil.FIG. 2 Amine and Hin......

Standard Test Method for Measurement of Hindered Phenolic Antioxidant Content in Non-Zinc Turbine Oils by Linear Sweep Voltammetry

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method is used to evaluate an automotive engine oil's control of engine deposits under operating conditions deliberately selected to accelerate deposit formation. This test method was correlated with field service data, determined from side-by-side comparisons of two or more oils in police, taxi fleets, and delivery van services. The same field service oils were then used in developing the operating conditions of this test procedure. FIG. 1 Schematic of Engine Fuel System 5.2 This test method, along with other test methods, defines the minimum performance level of the API Category SL (detailed information about this category is included in Specification D4485). This test method is also incorporated in automobile manufacturers' factory-fill specifications. 5.3 The basic engine used in this test method is representative of many that are in modern automobiles. This factor, along with the accelerated operating conditions, should be considered when interpreting test results. 1.1 This test method covers and is commonly referred to as the Sequence VG test,2 and it has been correlated with vehicles used in stop-and-go service prior to 1996, particularly with regard to sludge and varnish formation.3 It is one of the test methods required to evaluate oils intended to satisfy the API SL performance category. 1.2 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. 1.2.1 Exception—Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, tubing size, or specified single source equipment. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 7.7, 7.10.2.2, 8.3.4.2, 8.4.4.3, 9.2.6, 9.3.4.5, 12.1.1.7, 12.2.1.4, and Annex A1. 1.4 A Table of Contents follows:   Section Scope 1 Referenced Documents 2

Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it. 5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state. 5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run. 5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined. 5.5 Reference oils, on which the data obtained by this test method is known, are available. 5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.Note 1—When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil. 1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Measuring the Effect on Filterability of Engine Oils After Treatment with Various Amounts of Water and a Long (6?h) Heating Time

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method was developed to evaluate automotive lubricant’s effect on controlling cam lobe wear for overhead valve-train equipped engines with sliding cam followers.Note 1—This test method may be used for engine oil specifications, such as Specification D4485, API 1509, SAE J183, and ILSC GF 3. 1.1 This test method measures the ability of crankcase oil to control camshaft lobe wear for spark-ignition engines equipped with an overhead valve-train and sliding cam followers. This test method is designed to simulate extended engine idling vehicle operation. The Sequence IVA Test Method uses a Nissan KA24E engine. The primary result is camshaft lobe wear (measured at seven locations around each of the twelve lobes). Secondary results include cam lobe nose wear and measurement of iron wear metal concentration in the used engine oil. Other determinations such as fuel dilution of crankcase oil, non-ferrous wear metal concentrations, and total oil consumption, can be useful in the assessment of the validity of the test results.2 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exceptions—Where there is no direct SI equivalent such as pipe fittings, tubing, NPT screw threads/diameters, or single source equipment specified. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Annex A5 for specific safety precautions.

Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IVA Spark-Ignition Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method measures the tendency of automotive manual transmission and final drive lubricants to deteriorate under high-temperature conditions, resulting in thick oil, sludge, carbon and varnish deposits, and the formation of corrosive products. This deterioration can lead to serious equipment performance problems, including, in particular, seal failures due to deposit formation at the shaft-seal interface. This test method is used to screen lubricants for problematic additives and base oils with regard to these tendencies. 5.2 This test method is used or referred to in the following documents: 5.2.1 American Petroleum Institute (API) Publication 1560-Lubricant Service Designations for Automotive Manual Transmissions, Manual Transaxles, and Axles,7 5.2.2 STP-512A–Laboratory Performance Tests for Automotive Gear Lubricants Intended for API GL-5 Service,8 5.2.3 SAE J308-Information Report on Axle and Manual Transmission Lubricants,9 and 5.2.4 U.S. Military Specification MIL-L-2105D. 1.1 This test method is commonly referred to as the L-60-1 test.2 It covers the oil-thickening, insolubles-formation, and deposit-formation characteristics of automotive manual transmission and final drive axle lubricating oils when subjected to high-temperature oxidizing conditions. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.2.1 Exceptions—The values stated in SI units for catalyst mass loss, oil mass and volume, alternator output, and air flow are to be regarded as standard. 1.2.2 SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, or where there is a sole source supply equipment specification. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 7 and 8 and Annex A3.

Standard Test Method for Evaluation of the Thermal and Oxidative Stability of Lubricating Oils Used for Manual Transmissions and Final Drive Axles

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method was developed to evaluate automotive engine oils for protection against oil thickening and engine wear during moderately high-speed, high-temperature service. 5.2 The increase in oil viscosity obtained in this test method indicates the tendency of an oil to thicken because of oxidation. In automotive service, such thickening can cause oil pump starvation and resultant catastrophic engine failures. 5.3 The deposit ratings for an oil indicate the tendency for the formation of deposits throughout the engine, including those that can cause sticking of the piston rings in their grooves. This can be involved in the loss of compression pressures in the engine. 5.4 The camshaft and lifter wear values obtained in this test method provide a measure of the anti-wear quality of an oil under conditions of high unit pressure mechanical contact. 5.5 The test method was developed to correlate with oils of known good and poor protection against oil thickening and engine wear. Specially formulated oils that produce less than desirable results with unleaded fuels were also used during the development of this test method. 5.6 The Sequence IIIF engine oil test has replaced the Sequence IIIE test and can be used in specifications and classifications of engine lubricating oils, such as: 5.6.1 Specification D4485, 5.6.2 Military Specification MIL-PRF-2104, and 5.6.3 SAE Classification J183. 1.1 This test method covers an engine test procedure for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, as well as engine wear. Such oils include both single viscosity grade and multiviscosity grade oils that are used in both spark-ignition, gasoline-fueled engines, as well as in diesel engines.Note 1—Companion test methods used to evaluate engine oil performance for specification requirements are discussed in SAE J304. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exceptions—The values stated in inches for ring gap measurements are to be regarded as standard, and where there is no direct SI equivalent such as screw threads, National Pipe Threads/diameters, tubing size, or single source supply equipment specifications. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use. 1.4 This test method is arranged as follows: Subject

Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 There are several major causes of automotive lubricant-related seal failures. This test method addresses only those failures caused by excessive elastomer hardening, elongation loss, and volume swell and attempts to determine the likelihood that an oil might cause premature sealing system failures in field use. This test method may be used as a requirement of a performance specification, such as Specification D5760 and J2360. 5.2 Another major cause of seal failure is the formation of carbon, varnish, and sludge-like deposits on the seal lip. The deposit-forming characteristics of automotive gear oils are evaluated in Test Method D5704. That procedure is intended in part to evaluate the potential for oils to cause premature seal failure in field service. 1.1 This test method2 covers the determination of the compatibility of automotive gear oils with specific nitrile, polyacrylate, and fluoroelastomer oil seal materials. 1.2 Users of this test method should obtain Test Methods D412, D471, and D2240 and become familiar with their use before proceeding with this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determining Automotive Gear Oil Compatibility with Typical Oil Seal Elastomers

ICS
43.060.30 (Cooling systems. Lubricating systems)
CCS
E34
发布
2013
实施

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it. 5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state. 5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run. 5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined. 5.5 Reference oils, on which the data obtained by this test method is known, are available. 5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.Note 1—When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil. 1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Measuring the Effect on Filterability of Engine Oils After Treatment with Water and Dry Ice and a Short (30 min) Heating Time

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method measures a lubricant's ability to protect final drive axles from abrasive wear, adhesive wear, plastic deformation, and surface fatigue when subjected to low-speed, high-torque conditions. Lack of protection can lead to premature gear or bearing failure, or both. 5.2 This test method is used, or referred to, in the following documents: 5.2.1 American Petroleum Institute (API) Publication 1560.8 5.2.2 STP-512A.9 5.2.3 SAE J308. 5.2.4 Military Specification MIL-PRF-2105E. 5.2.5 SAE J2360. 1.1 This test method is commonly referred to as the L-37 test.2 This test method covers a test procedure for evaluating the load-carrying, wear, and extreme pressure properties of a gear lubricant in a hypoid axle under conditions of low-speed, high-torque operation. 1.2 This test method also provides for the running of the low axle temperature (Canadian) L-37 test. The procedure for the low axle temperature (Canadian) L-37 test is identical to the standard L-37 test with the exceptions of the items specifically listed in Annex A6. The procedure modifications listed in Annex A6 refer to the corresponding section of the standard L-37 test method. 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3.1 Exceptions—In Table A9.1, the values stated in SI units are to be regarded as standard. Also, no SI unit is provided where there is not a direct SI equivalent. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 4 and 7.

Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 Significance of Low-Temperature, Low Shear Rate, Engine Oil Rheology—The low-temperature, low-shear viscometric behavior of an engine oil determines whether the oil will flow to the sump inlet screen, then to the oil pump, then to the sites in the engine requiring lubrication in sufficient quantity to prevent engine damage immediately or ultimately after cold temperature starting. 5.1.1 Two forms of flow problems have been identified,4 flow-limited and air-binding behavior. The first form of flow restriction, flow-limited behavior, is associated with the oil's viscosity; the second, air-binding behavior, is associated with gelation. 5.2 Significance of the Test Method—The temperature-scanning technique employed by this test method was designed to determine the susceptibility of the engine oil to flow-limited and air-binding response to slow cooling conditions by providing continuous information on the rheological condition of the oil over the temperature range of use.4 ,5,7 In this way, both viscometric and gelation response are obtained in one test.Note 1—This test method is one of three related to pumpability related problems. Measurement of low-temperature viscosity by the two other pumpability Test Methods D3829 and D4684, hold the sample in a quiescent state and generate the apparent viscosity of the sample at shear rates ranging up to 15 sec-1 and shear stresses up to 525 Pa at a previously selected temperature. Such difference in test parameters (shear rate, shear stress, sample motion, temperature scanning, and so forth) can lead to differences in the measured apparent viscosity among these test methods with some test oils, particularly when other rheological factors associated with gelation are present. In addition, the three methods differ considerably in cooling rates. 5.3 Gelation Index and Gelation Index Temperature—This test method has been further developed to yield parameters called the Gelation Index and Gelation Index temperature. The first parameter is a measure of the maximum rate of torque increase caused by the rheological response of the oil as the oil is cooled slowly. The second parameter is the temperature at which the Gelation Index occurs. 1.1 This test method covers the measurement of the apparent viscosity of engine oil at low temperatures. 1.2 A shear rate of approximately 0.2 s-1 is produced at shear stresses below 100 Pa. Apparent viscosity is measured continuously as the sample is cooled at a rate of 1°C/h over the range −5 to −40°C, or to the temperature at which the viscosity exceeds 40 000 mPa·s (cP). 1.3 The measurements resulting from this test method are viscosity, the maximum rate of viscosity increase (Gelation Index), and the temperature at which the Gelation Index occurs. 1.4 Applicability to petroleum products other than engine oils has not been determined in preparing this test method. 1.5 The values stated in SI units are to be regarded as standard......

Standard Test Method for Low Temperature, Low Shear Rate, Viscosity/Temperature Dependence of Lubricating Oils Using a Temperature-Scanning Technique

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施

5.1 This test method covers the rapid determination of 22 elements in used and unused lubricating oils and base oils, and it provides rapid screening of used oils for indications of wear. Test times approximate a few minutes per test specimen, and detectability for most elements is in the low mg/kg range. In addition, this test method covers a wide variety of metals in virgin and re-refined base oils. Twenty-two elements can be determined rapidly, with test times approximating several minutes per test specimen. 5.2 When the predominant source of additive elements in used lubricating oils is the additive package, significant differences between the concentrations of the additive elements and their respective specifications can indicate that the incorrect oil is being used. The concentrations of wear metals can be indicative of abnormal wear if there are baseline concentration data for comparison. A marked increase in boron, sodium, or potassium levels can be indicative of contamination as a result of coolant leakage in the equipment. This test method can be used to monitor equipment condition and define when corrective actions are needed. 5.2.1 The significance of metal analysis in used lubricating oils is tabulated in Table 4.TABLE 4 Wear Metals (Elements) in Used Lubricating Oils Elements Wear Indication Argon Wrist pin bearings in railroad and auto engines, silver plotted spline lubricating pump Aluminum Piston and bearings wear, push rods, air cooler, pump hosings, oil pumps, gear castings, box castings Boron Coolant leakage in system

Standard Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry lpar;ICP-AESrpar;

ICS
71.040.50 (Physicochemical methods of analysis); 7
CCS
E34
发布
2013
实施

5.1 This test method is used to evaluate an automotive engine oil's control of engine deposits under operating conditions deliberately selected to accelerate deposit formation. This test method was correlated with field service data, determined from side-by-side comparisons of two or more oils in police, taxi fleets, and delivery van services. The same field service oils were then used in developing the operating conditions of this test procedure. FIG. 1 Schematic of Engine Fuel System 5.2 This test method, along with other test methods, defines the minimum performance level of the API Category SL (detailed information about this category is included in Specification D4485). This test method is also incorporated in automobile manufacturers' factory-fill specifications. 5.3 The basic engine used in this test method is representative of many that are in modern automobiles. This factor, along with the accelerated operating conditions, should be considered when interpreting test results. 1.1 This test method covers and is commonly referred to as the Sequence VG test,2 and it has been correlated with vehicles used in stop-and-go service prior to 1996, particularly with regard to sludge and varnish formation.3 It is one of the test methods required to evaluate oils intended to satisfy the API SL performance category. 1.2 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. 1.2.1 Exception—Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, tubing size, or specified single source equipment. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 7.7, 7.10.2.2, 8.3.4.2, 8.4.4.3, 9.2.6, 9.3.4.5, 12.1.1.7, 12.2.1.4, and Annex A1. 1.4 A Table of Contents follows:

Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2013
实施



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号