关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

天宫二号”空间实验之“天极”望远镜(三)

2020.10.26

  “天极”望远镜做什么?“天极”:偏爱伽玛暴的小蜜蜂

  我们知道,人的眼睛对光的偏振状态是不能分辨的,但某些昆虫的眼睛对偏振却很敏感。

  比如蜜蜂有五只眼:三只单眼、两只复眼,每只复眼包含有6300个小眼,这些小眼能根据太阳的偏振光确定太阳的方位,然后以太阳为定向标来判断方向,所以蜜蜂无论外出采蜜还是回巢,都不会迷路。

左:昆虫的复眼(图片来自网络);右:“天极”望远镜的探测器

  为了测量伽玛射线的偏振,“天极”望远镜采用1600根塑料闪烁棒(可不是普通的塑料哦,伽玛射线在该材料中可诱发荧光)组成一个探测器阵列(是不是很像小蜜蜂的复眼?),通过测量每个伽玛射线光子同时作用的多根塑料闪烁棒的位置分布获取偏振信息。

  虽然“天极”望远镜跟小蜜蜂测量偏振的原理并不相同,但二者在“眼睛”的构造上却有异曲同工之妙!

  此外,由于伽玛暴是不可预测的随机发生的天文事件,为了最大限度地捕捉伽玛暴,“天极”望远镜将在允许的情况下尽量多地开机运行,犹如辛勤的小蜜蜂,不知疲倦地寻找宇宙中最壮丽的恒星“生命之花”。

  “天极”:探索宇宙“天机”

  伽玛暴的起源及相应的物理过程一直是天文学家们研究的最前沿课题之一。

  它涉及宇宙学尺度上的恒星级过程,能够将天体物理中最重要的三个层次——恒星、星系以及宇宙学联系起来。

  虽然这十几年来人们对伽玛暴的研究取得了长足的进步,但是有关伽玛暴的一些基本问题还是没有得到很好的解决。对伽玛暴伽玛射线偏振的研究可以为许多伽玛暴问题提供新的线索。

  虽然对伽玛暴伽玛射线偏振的测量具有十分重要的意义,但是由于仪器能力的限制,目前国际上的观测结果还非常少,而且没有任何一个测量结果达到了科学意义上的确认程度。

  “天极”望远镜的主要科学目标是高精度且系统性地测量伽玛射线暴的偏振性质。

  预期运行两年“天极”可以探测到大约100个伽玛射线暴,同时作为国际上最灵敏的伽玛射线暴偏振探测仪器,“天极”能够获得高精度伽玛射线偏振测量的最大样本。

  通过系统地测量伽玛射线暴的偏振,能够从观测上对伽玛射线暴的辐射机制等物理模型加以限制或约束,为更好的理解宇宙中极端天体物理环境下的这种最剧烈的爆发现象产生的机制做出重要的贡献。

  “天极”望远镜是谁做的?

  “天极”望远镜是中欧国际合作项目,由中国科学院高能物理研究所和瑞士日内瓦大学(UoG: University of Geneva)、瑞士保罗谢尔研究所(PSI: Paul Scherrer Institut)和波兰核物理研究所(NCBJ:National Centre for Nuclear Research)等单位共同参与。

  中科院高能所具体负责:

  1)“天极”望远镜方案的确定;

  2)电控箱的硬、软件研制;

  3)13套探测单体的研制;

  4)负责牵头完成“天极”望远镜科学数据中心建设。

  日内瓦大学具体负责:

  1)探测器的低压供电电路研制;

  2)高压供电电路的研制;

  3)12套探测单体的研制;

  4)负责探测器的结构和热设计。

  保罗谢尔研究所具体负责:

  1)探测单体的前端电子学研制;

  2)中心触发模块研制。

  中欧各合作单位共同完成了“天极”望远镜在轨软件,其中软件编写主要由高能所、保罗谢尔研究所和波兰核物理研究所共同完成,日内瓦大学重点参与软件的测试和验证工作。

  中科院空间应用系统载荷运控中心提供了部分“天极”望远镜快视软件。


推荐
关闭