关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

HFSS15在基片集成波导单脉冲馈电网络仿真中的应用(二)

2020.9.28

优化模型的关键在于调整圆柱面的划分数量,从而使得网格的数量下降到计算机内存可接受的程度,但是同时又要保证仿真的正确性。图4是对图3所示传输线进行仿真的结果,对于金属化孔,默认的圆弧面网格划分数量为16。从图4中可以看出随着划分数量从16降低到6,网格划分对应的数量从19953降低到5455,而回波损耗的误差约0.5dB左右,插入损耗误差小于0.02dB,相位的误差小于1度。当然,不同复杂程度的模型对应不同程度的误差量级,因此兼顾到效率和运算精度,最终取圆弧面的网格划分数量为10。

圆弧面网格划分不同数量下的仿真结果。a)回波损耗;b)插入损耗;c)相位差异;d)网格数量

图4、圆弧面网格划分不同数量下的仿真结果。a)回波损耗;b)插入损耗;c)相位差异;d)网格数量

3.2设计实例

工程实际需求的基片集成波导单脉冲馈电网络工作在Ku波段,它主要由四个3-dB电桥,四个90度移相器,以及四个1:8功率分配网络组成,如图5(a)所示。其中输入口为端口1-4,共四个,1口为EΣ,2口和3口分别为EΔα和EΔβ,而4口称为Q口,一般接匹配负载;输出口为端口5-36,共32个。图5(b)为整个系统在HFSS中的仿真模型,其中1-4口,SSMA水平输入,5-36口SMP垂直输出,基片集成波导主体电路通过基片集成波导/微带过渡到同轴端口。设计的印制板采用厚度为1.016mm的Rogers RT-6002,该介质板介电常数为2.94,由于参杂了陶瓷粉,因此质地较硬,同时相位的温度稳定性较好,特别适合高频使用。由于本设计要求工作在Ku波段,因此金属化孔的半径为0.2mm。采用IBM服务器X3650(2xE5620,64G内存)最终经过8次的迭代,如图5(c)所示。

基片集成波导单脉冲网络的原理图(a),仿真模型(b),仿真收敛状态(c)以及实物图(d)

图5、基片集成波导单脉冲网络的原理图(a),仿真模型(b),仿真收敛状态(c)以及实物图(d)

加工完成的实物图如图5(d)所示,整个馈电网络的尺寸为146.5mm╳140mm,由于印制板和结构件的公差配合,印制板的尺寸比结构件的腔体要稍微小一些,因此印制板和腔体壁之间有一定的间隙,间隙的存在影响了系统的匹配,因次通过增加额外的调配手段(Tuning Point),使得系统匹配。样件的测试基于40GHz网络分析仪,最终测试的结果,如图6。

基片集成波导单脉冲网络的测试和仿真对比结果:总端口回波损耗(a),总端口间的隔离度(b),分端口幅度均方差(c)以及分端口相位均方差(d)

图6、基片集成波导单脉冲网络的测试和仿真对比结果:总端口回波损耗(a),总端口间的隔离度(b),分端口幅度均方差(c)以及分端口相位均方差(d)

4结论

介绍了基片集成波导以及单脉冲天线的基本工作原理,并根据工程需求,利用优化的金属化孔模型,在保证仿真精度的前提下,使得仿真的效率进一步提高;最终设计了Ku波段的电大尺寸馈电网络,在6%的带宽内总口回波损耗好于10dB,隔离大于25dB,32个输出端口的幅度均方误差小于0.5dB,相位误差小于6度。


推荐
关闭