关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

实验室分析方法--高效色谱柱原理

2022.1.27

高效液相色谱理论

1、塔板理论

①塔板理论介绍:塔板理论是 Martin 和 Synger 首先提出的色谱热力学平衡理论。它把色谱柱看作分馏塔,把组分在色谱柱内的分离过程看成在分馏塔中的分馏过程,即组分在塔板间隔内的分配平衡过程。这个理论假设:色谱柱内存在许多塔板,组分在塔板间隔(即塔板高度)内完全服从分配定律,并很快达到分配平衡;样品加在第0号塔板上,样品沿色谱柱轴方向的扩散可以忽略;流动相在色谱柱内间歇式流动,每次进入一个塔板体积;在所有塔板上分配系数相等,与组分的量无关;虽然以上假设与实际色谱过程不符,如色谱过程是一个动态过程,很难达到分配平衡;组分沿色谱柱轴方向的扩散是不可避免的。但是塔板理论导出了色谱流出曲线方程,成功地解释了流出曲线的形状、浓度极大点的位置,能够评价色谱柱的柱效。


理论塔板高度就是指被测组分在两相间达到分配平衡时的塔板高度间隔,以 n 表示。这个理论还假设:在色谱柱中,各段塔板高度间隔都是一样的,如果色谱柱的高度为 L,则一根色谱柱的塔板数目应为:n=L/H。式中的 n 被称为理论塔板数,塔板数的多少是分馏塔分离效率高低的标志,对色谱柱而言,塔板数越多,柱效越高。


②色谱流出曲线方程及定量参数(峰高 h 和峰面积 A):根据塔板理论,流出曲线可用下述正态分布方程来描述:C=e。


由色谱流出曲线方程可知:当 t=t时,浓度 C 有极大值,Cmax就是色谱峰的峰高。当实验条件一定时(即σ一定),峰高 h 与组分的量 C0(进样量)成正比,所以正常峰的峰高可用于定量分析;当进样量一定时,σ越小(柱效越高),峰高越高,因此,提高柱效可以提高 HPLC 分析的灵敏度。


由流出曲线方程对 V(0~∞)求积分,即得出色谱峰面积 A=2.507σCmax=C0。可见 A 相当于组分进样量 C0,因此是常用的定量参数。把 Cmax=h 和 Wh/2=2.355σ代入上式,即得 A=1.064Wh/2h,此为正常峰的峰面积计算公式。


2、速率理论(又称随机模型理论)

①液相色谱速率方程:1956年,荷兰学者 Van Deemter 等人吸收了塔板理论的概念,并把影响塔板高度的动力学因素结合起来,提出了色谱过程的动力学理论——速率理论。它把色谱过程看作一个动态非平衡过程,研究过程中的动力学因素对峰展宽(即柱效)的影响。后来 Giddings 和 Snyder 等人在 Van Deemter 方程(H=A+B/u+Cu,后称气相色谱速率方程)的基础上,根据液体与气体的性质差异,提出了液相色谱速率方程(即Giddings方程)。


②影响柱效的因素


a.涡流扩散(eddy diffusion)。由于色谱柱内填充剂的几何结构不同,分子在色谱柱中的流速不同而引起的峰展宽。涡流扩散项A=2λdp,dp为填料直径,λ为填充不规则因子,填充越不均匀λ越大。HPLC 常用填料的粒度一般为3~10μm,最好为3~5μm,粒度分布RSD≤5%。但粒度太小难于填充均匀(λ大),且会使柱压过高。大而均匀(球形或近球形)的颗粒容易填充规则均匀,λ越小。总的说来,应采用细而均匀的载体,这样有助于提高柱效。毛细管无填料,A=0。


b.分子扩散(molecular diffusion),又称纵向扩散。由于进样后溶质分子在柱内存在浓度梯度,导致轴向扩散而引起的峰展宽。分子扩散项B/u=2γDm/u。u为流动相线速率,分子在柱内的滞留时间越长(u小),展宽越严重。在低流速时,它对峰形的影响较大。Dm为分子在流动相中的扩散系数,由于液相的Dm很小,通常仅为气相的10-4~10-5,因此在 HPLC 中,只要流速不太低的话,这一项可以忽略不计。γ是考虑到填料的存在使溶质分子不能自由地轴向扩散而引入的柱参数,用以对Dm进行校正。γ一般在0.6~0.7,毛细管柱的γ=1。


c.传质阻抗(mass transfer resistance)。由于溶质分子在流动相、静态流动相和固定相中的传质过程而导致的峰展宽。溶质分子在流动相和固定相中的扩散、分配、转移的过程并不是瞬间达到平衡,实际传质速率是有限的,这一时间上的滞后使色谱柱总是在非平衡状态下工作,从而产生峰展宽。


从速率方程式可以看出,要获得高效能的色谱分析,一般可采用以下措施:进样时间要短;填料粒度要小;改善传质过程,过高的吸附作用力可导致严重的峰展宽和拖尾,甚至不可逆吸附;适当的流速,以 H 对 u 作图,则有一最佳线速率 uopt,在此线速率时,H最小。一般在液相色谱中,uopt 很小(0.03~0.1mm/s),在这样的线速率下分析样品需要很长时间,一般来说都选在1mm/s 的条件下操作,能有较小的检测器死体积。


③柱外效应:速率理论研究的是柱内峰展宽因素,实际上在柱外还存在引起峰展宽的因素,即柱外效应(色谱峰在柱外死空间里的扩展效应)。色谱峰展宽的总方差等于各方差之和。


其他柱外效应主要由低劣的进样技术、从进样点到检测池之间除柱子本身以外的所有死体积所引起。为了减少柱外效应,首先,应尽可能减少柱外死体积,如使用“零死体积接头”连接各部件,管道对接宜呈流线形,检测器的内腔体积应尽可能小。其次,希望将样品直接进在柱头的中心部位,但是由于进样阀与柱间有接头,柱外效应总是存在的。此外,要求进样体积≤VR/2。


柱外效应的直观标志是容量因子 k 小的组分(如k<2)峰形拖尾和峰宽增加得更为明显;k大的组分影响不显著。由于 HPLC 的特殊条件,当柱子本身效率越高(N 越大),柱尺寸越小时,柱外效应越突出。


3、色谱分离原理

根据分离机制不同,高效液相色谱可分为四大基础类型:分配色谱、吸附色谱、离子交换色谱和凝胶色谱。


①分配色谱法:分配色谱法是四种液相色谱法中应用最广泛的一种。它类似于溶剂萃取,溶质分子在两种不相混溶的液相即固定相和流动相之间按照它们的相对溶解度进行分配。一般将分配色谱法分为液-液色谱和键合相色谱两类。液-液色谱的固定相是通过物理吸附的方法将液相固定相涂于载体表面。在液-液色谱中,为了尽量减少固定相的流失,选择的流动相应与固定相的极性差别很大。


a.液-液色谱:按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。


正相色谱法:采用极性固定相(如聚乙二醇、氨基与氰基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正己烷、环己烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。


反相色谱法:一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。适用于分离非极性和极性较弱的化合物。RPC 在现代液相色谱中的应用最为广泛,据统计,它占整个HPLC 应用的80%左右。


随着柱填料的快速发展,反相色谱法的应用范围逐渐扩大,现已应用于某些无机样品或易解离样品的分析。为控制样品在分析过程的解离,常用缓冲液控制流动相的 pH 值。但需要注意的是,一般的 C18 和 C使用的 pH 值通常为2~8,太高的 pH 值会使硅胶溶解,太低的 pH 值会使键合的烷基脱落;但也有新液相色谱柱可在 pH 1~14范围操作。


从下表可看出,当极性为中等时正相色谱法与反相色谱法没有明显的界线(如氨基键合固定相)。


正相色谱法与反相色谱法比较表

项目

正相色谱法

反相色谱法

固定相极性

高~中

中~低

流动相极性

低~中

中~高

组分洗脱次序

极性小先洗出

极性大先洗出


b.键合相色谱:通过化学反应将有机分子键合在载体或硅胶表面上形成固定相。目前,键合固定相一般采用硅胶为基体,利用硅胶表面的硅醇基与有机分子之间成键,即可得到各种性能的固定相。一般来说,键合的有机基团主要有两类:疏水基团、极性基团。疏水基团有不同链长的烷烃(C和 C18)和苯基等。极性基团有丙氨基、氰乙基、二醇基、氨基等。与液-液色谱类似,键合相色谱也分为正相键合相色谱和反相键合相色谱。


在分配色谱中,对于固定相和流动相的选择,必须综合考虑溶质、固定相和流动相三者之间分子的相互作用力才能获得好的分离。三者之间的相互作用力可用相对极性来定性地说明。分配色谱主要用于分子量低于5000,特别是分子量在1000以下的非极性小分子物质的分析和纯化,也可用于蛋白质等生物大分子的分析和纯化,但在分离过程中容易使生物大分子变性失活。


②吸附色谱法:吸附色谱又称液-固色谱,固定相为固体吸附剂。这些固体吸附剂一般是一些多孔的固体颗粒物质,在它的表面上通常存在吸附点。因此,吸附色谱是根据物质在固定相上的吸附作用不同来进行分离的。分离过程是吸附—解吸附的平衡过程。常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质,其中硅胶的应用最为普遍。适用于分离分子量为200~1000的组分,大多数用于非离子型化合物,离子型化合物易产生拖尾。液-固色谱常用于分离那些溶解在非极性溶剂中、具有中等分子量且为非离子型的试样。此外,液-固色谱特别适于分离几何异构体。


③离子交换色谱法:离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。一般常用的离子交换剂的基质有三大类:合成树脂、纤维素和硅胶。作为离子交换剂的有阴离子交换剂和阳离子交换剂,它们的功能基团有—SO3H、—COOH、—NH2及—N+R3。流动相一般为水或含有有机溶剂的缓冲液。被分离组分在色谱柱上分离的原理是树脂上可电离离子与流动相中具有相同电荷的离子及被测组分的离子进行可逆交换,根据各离子与离子交换基团具有不同的电荷吸引力而分离。被分离组分在离子交换柱中的保留时间除跟组分离子与树脂上的离子交换基团的作用强弱有关外,它还受流动相的 pH 值和离子强度的影响。pH 值可改变化合物的解离程度,进而影响其与固定相的作用。流动相的盐浓度大,则离子强度高,不利于样品的解离,导致样品较快流出。


离子交换色谱适于分离离子化合物、有机酸和有机碱等能电离的化合物和能与离子基团相互作用的化合物。它不仅广泛应用于有机物质,而且广泛应用于生物物质的分离,如氨基酸、核酸、蛋白质、维生素等。


④凝胶色谱法:凝胶色谱又称尺寸排斥色谱。与其他液相色谱方法不同,它是基于试样分子的尺寸大小和形状不同来实现分离的。凝胶的空穴大小与被分离的试样分子的大小相当。太大的分子由于不能进入空穴,被排除在空穴之外,随流动相先流出;小分子则进入空穴,与大分子所走的路径不同,最后流出来。中等分子处于两者之间。常用的填料有琼脂糖凝胶、聚丙烯酰胺。流动相可根据载体和试样的性质,选用水或有机溶剂。凝胶色谱的分辨力高,不会引起变性,可用于分离分子量高(>2000)的化合物,如组织提取物、多肽、蛋白质、核酸等,但其不适于分离分子量相似的试样。


从应用的角度讲,以上四种基本类型的色谱法实际上是相互补充的。对于分子量大于10000的物质的分离主要适合选用凝胶色谱;低分子量的离子化合物的分离较适合选用离子交换色谱;对于极性小的非离子化合物最适用分配色谱;而对于要分离非极性物质、结构异构,以及从脂肪醇中分离脂肪族化合物等最好要选用吸附色谱。


综上所述,高效液相色谱作为物质分离的重要工具,在各个方面都取得了很大的发展,出现了许多新型色谱。在分配机制方面,亲和色谱则是根据另一类分配机制而进行分离的新型色谱,它是利用生物大分子与其相应互补体间特异识别能力进行多次差别分离的一种色谱,具有选择性高、操作条件温和的特点。在流动相方面,超临界流体色谱以超临界流体为流动相。混合物在超临界流体色谱上的分离机理与气相色谱及液相色谱一样,即基于各化合物在两相间的分配系数不同而得到分离。超临界流体色谱融合了气相色谱和液相色谱的一些特征,具有比气相色谱和液相色谱更广泛的应用范围。在固定相方面,高分子手性固定相实现了手性药物的分离。同时,近年来,为了使物质的检测更加准确方便,出现了各种 HPLC 串联技术。以 HPLC-MS 为例,它结合了 HPLC 对样品高分离能力和 MS(质谱法)能提供分子量与结构信息的优点,在药物、食品、环境分析等领域发挥作用,提供可靠的数据。


推荐
关闭