关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

文献解读:分层组装的DNA线框纳米结构,可用于...(二)

2021.1.18

3.靶向性细胞毒性和稳定性

在鉴定了CA4-Oct的细胞内化和穿透能力后,作者测定了其对目标癌细胞的细胞毒性。为了研究适配体介导的靶向给药的影响,作者选择了8h的短期孵育和40h的额外孵育,将抗癌功能从非特异性细胞吸附和核溶解中分离出来。作者发现,对照组Sgc8c、Lib、CA4-Lib、DNA八面体和CA4-Lib-Oct对HCT116细胞没有或可忽略的细胞毒性(图3a)。正如预期的那样,CA4-Oct比CA4-FS对HCT116细胞表现出更高的抑制细胞毒性。为了进一步强调CA4-Oct的细胞特异性毒性,作者还比较了对HCT116和NCM460细胞的毒性。如图3a所示,在孵育48小时后(预处理8小时后洗),除CA4外,所有组对NCM460细胞都没有表现出或可以忽略不计的细胞毒性。基于这些结果,CA4-Oct通过包裹CA4-FS表现出对肿瘤细胞的选择性,从而表现出选择性细胞毒性。

接下来,作者将培养时间增加到48小时,以评估DNA序列潜在的不稳定性介导的降解所导致的脱靶风险的可能性。基于图3a研究结果,作者认为显著提高CA4-Oct的核酸酶抗性可以显著缓解单价CA4-FS的脱靶效应,从而获得更好的安全性。

为了进一步系统地揭示CA4-Oct的靶向细胞毒性,作者构建了细胞共培养系统,模拟药物对体内多细胞共存环境的现实影响。在本研究中分别用CA4-Oct或CA4-FS处理转染了GFP的HCT116(GFP阳性)和NCM460(GFP阴性)的共培养体系(1:1,Q3/Q4,图3b)。在未经任何处理的孵育4h后,由于癌细胞的恶性增殖,活癌细胞与正常活细胞的比率(RCN)约为2:1(图3c)。短期治疗(8h冲洗后),CA4-Oct组RCN变为1:4,CA4-FS组RCN仅为1:2(图3d,e)。除抑制增殖外,CA4-Oct杀死约60%的HCT116细胞,而CA4-FS仅杀死45%((Q2/(Q2+Q3),图3d,e)。同时,CA4-FS和CA4-Oct导致正常细胞凋亡率较低(Q1/(Q1+Q4),图3d,e)。在长期治疗(不洗涤)中,CA4-FS杀死了52%的NCM460细胞,尽管它诱导了71%的HCT116细胞凋亡(图3g)。然而,CA4-Oct也能杀死71%的HCT116细胞,但仅能引起28%的NCM460细胞凋亡(图3f)。因此,CA4-FS和CA4-Oct的RCNs分别约为1:3和1:5。显然,由于细胞外血清稳定性的差异,CA4-FS的脱靶不良反应比CA4-Oct严重的多。这些结果表明,DNA八面体增强了肿瘤细胞的靶向细胞毒性,降低了正常细胞的不稳定性介导的脱靶风险。

图3

4.活体成像分析

在良好的体外表现的鼓舞下,作者实施了体内评估。首先,将Cy5标记的CA4-Oct、Cy5标记的CA4-FS和游离的Cy5分别静脉注射到SD大鼠,通过追踪眼眶静脉血荧光信号来评价它们的药代动力学。补充实验结果支持Cy5在体内实验中未出现超出说明以外的实验现象,携带CA4的CA4-Oct比单链CA4-FS的血液浓度和循环时间要高得多。

CA4-FS组在注射后4和8小时肿瘤部位显示出更亮的Cy5信号,但在注射后12小时显示出非常微弱的荧光信号(图4a)。但CA4-Oct组在注射后第1天荧光信号仍然很亮。同时处死小鼠进行离体分析,评价其生物分布。静脉给药后12h,Cy5和CA4-FS主要分布在肾脏,而CA4-Oct在肿瘤部位表现出超过24h的强烈荧光信号(图4b)。

为了进一步确定CA4-Oct在实体瘤组织中是否具有优越的聚集能力和穿透能力,作者收集CA4-Oct组和CA4-FS组的肿瘤组织进行切片分析。CA4-Oct组在各实验时间点的Cy5信号均比CA4-FS组更亮(图4c,d),说明CA4-Oct具有更强的聚集能力,能够将更多的CA4药物传递到肿瘤组织。从CA4-FS与FITC标记的血管生物标志物CD31共定位结果来看,CA4-FS大多数分布在肿瘤血管内部或周围(图4d)。相比之下,大多数CA4-Oct穿过肿瘤血管,到达肿瘤组织(图4c),这将有利于深部给药。多价、致密、刚性的CA4-Oct确实增强了单链CA4-FS的穿透能力及其在实体肿瘤组织中的治疗潜力。

图4

5.体内靶向癌症治疗

图像表征完成后,作者在HCT116荷瘤异种移植小鼠中进行了抗肿瘤实验,未发现溶血现象。经5次静脉给药(接种肿瘤后第18天),CA4-Oct、CA4-FS、CA4组的肿瘤生长抑制率分别达到86%、65%、46%(图5a)。但一旦停止给药,CA4-Oct的抑瘤率仍维持在85%左右,而CA4-FS组和CA4组的抑瘤率进一步下降,分别降至54%和30%(第32天)。这可能是由于CA4-Oct渗透深度较深,滞留时间较长所致。此外,体外肿瘤重量和肿瘤图像均表明CA4-Oct是作为靶向药物的选择(图5b,c)。为了评估治疗的安全性,作者首先监测了这些小鼠的体重变化。由于全身分布的副作用,CA4处理的小鼠体重明显减轻(约7%)(图5d)。与CA4-Oct组相比,CA4-FS组体重增长也下降了6%。第32天取脏器称重,评价药物对健康组织的可能损伤。与PBS组和CA4-Oct组相比,CA4和CA4-FS组肝脏异常增重更为严重(图5e)。对这个解毒器官的损害可能是归因于CA4-FS的脱靶毒性和CA4的非选择性毒性。为了进一步阐明CA4-Oct治疗的有效性和安全性,作者采集肿瘤组织、主要脏器和血液进行更详细的研究。CA4-Oct显示TUNEL阳性细胞(TUNEL+)有约65%的凋亡,而CA4-FS和CA4仅显示35%和20%的杀伤能力(图5f)。与CA4-FS组和CA4组相比,增殖标记Ki67信号显示CA4-Oct对肿瘤增殖的抑制作用(图5g)。

接下来作者也采集了相同条件下未接种肿瘤的正常小鼠的正常器官和血液。首先,作者研究了可能的肝毒性,因为CA4可以引起肝痛。与未接种肿瘤的正常组相比,PBS组肝内淋巴细胞轻微浸润,但给药CA4-Oct减轻了这种趋势(图5h)。PBS和CA4-Oct均未显示明显的肝细胞死亡。CA4-FS组肝细胞局部坏死,肝星状细胞增生。在小鼠肝脏中央静脉周围观察到局部淋巴细胞浸润(图5h)。更严重的是CA4给药后肝细胞大面积斑片状坏死,HSCs增生更为明显。CA4组可见许多中性粒细胞和淋巴细胞浸润区,丙氨酸转氨酶和天冬氨酸转氨酶异常升高也证实了这一趋势。这些结果显示CA4-FS和CA4的肝毒性水平不同,而CA4-Oct显示出一定的潜在安全性。

图5

然后作者评估各组肾脏的HE染色切片的组织病理学。与正常组比较,PBS组与CA4-Oct无明显差异(图5i)。然而,CA4-FS给药后,可以看到肾小管刷状缘局灶性脱落和轻微的细胞肿胀。在游离CA4组中,除了明显的细胞脱落和肿胀外,还发现血清肌酐明显升高,间质水肿伴炎性细胞浸润(图5i)。这些结果表明,适配体修饰缓解了CA4的肾脏损伤,而DNA八面体保护CA4-FS免于靶CA4外溢至肾脏组织。

作者继续检查其他的生化和血液学数据。与正常组和PBS组比较,CA4-Oct组CK无明显升高,而CA4-FS组和CA4组CK有不同程度升高。说明CA4-FS和CA4可造成不同程度的心脏损伤。也有报道称游离CA4可引起血小板减少症。CA4确实导致血小板明显减少,但CA4-FS和CA4-Oct组未见损伤。另一个不一致的指标是白细胞(WBCs)的数量。令人惊讶的是,与正常组相比,CA4-Oct组的WBCs没有明显升高,而PBS、CA4-FS和CA4组的WBCs明显升高。这些发现进一步说明PBS、CA4-FS和CA4可能导致潜在的炎症和骨髓抑制。只有CA4-Oct的抗癌方案可以获得有效的治疗,且具有足够的生物安全性。不幸的是,作者并没有从心脏、肝脏和脾脏的HE切片评估中发现CA4-Oct的其他优势。此外,除CA4外,其他各组均未诱导免疫反应指标明显升高。

结 论

为了解决小分子药物治疗癌症的问题,作者设计了一种创新的DNA线框纳米结构,它由DNA八面体和CA4-FS组成。本研究利用固相合成技术制备CA4-FS,并利用DNA分层自组装技术构建具有外向手柄数可控的DNA八面体。通过编程加载过程,多个CA4-FS可以准确地附着在DNA八面体上,形成一个三维核-壳纳米结构。DNA八面体纳米载体结构紧凑、刚性强,与5’端和3’端暴露的灵活适配体载体相比,具有更高的耐核酶稳定性。由于DNA手柄的功能化,该DNA纳米结构显示出和高容量的药物装载控制性能。同时,DNA线框纳米载体重塑了单链CA4-FS的性质,具有更好的生物稳定性、更高的细胞内化、优异的成像特性和更深的穿透肿瘤深度,从而获得更有效的肿瘤成像和靶向治疗。综上所述,这种基于分层自组装的具有药物定位功能的八面体DNA为肿瘤靶向治疗和医学提供了一个有效和有前景的平台。


推荐
关闭