75.040 原油 标准查询与下载



共找到 267 条与 原油 相关的标准,共 18

1.1 This test method covers the determination of the approximate chloride (salts) concentration in crude oil. The range of concentration covered is 3.5 mg ⁄kg to 500 mg ⁄kg or 1.0 lb ⁄1000 bbl to 150 lb ⁄1000 bbl (PTB) as chloride concentration/volume of crude oil. 1.2 This test method measures conductivity in the crude oil due to the presence of common chlorides, such as sodium, calcium, and magnesium. Other conductive materials may also be present in the crude oil. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

Standard Test Method for Salts in Crude Oil (Electrometric Method)

ICS
75.040
CCS
发布
2021-07-01
实施

Standard Test Method for Determination of Light Hydrocarbons and Cut Point Intervals in Live Crude Oils and Condensates by Gas Chromatography

ICS
75.040
CCS
发布
2021-01-01
实施

1.1 This test method covers a procedure for estimating the equilibrium solubility of several common gases in petroleum and synthetic lubricants, fuels, and solvents, at temperatures between 0 and 488 K. 1.2 This test method is limited to systems in which polarity and hydrogen bonding are not strong enough to cause serious deviations from regularity. Specifically excluded are such gases as HCl, NH3, and SO2, and hydroxy liquids such as alcohols, glycols, and water. Estimating the solubility of CO2 in nonhydrocarbons is also specifically excluded. 1.3 Highly aromatic oils such as diphenoxy phenylene ethers violate the stated accuracy above 363 K, at which point the estimate for nitrogen solubility is 43 % higher than the observation. 1.4 Lubricants are given preference in this test method to the extent that certain empirical factors were adjusted to the lubricant data. Estimates for distillate fuels are made from the lubricant estimates by a further set of empirical factors, and are less accurate. Estimates for halogenated solvents are made as if they were hydrocarbons, and are the least accurate of the three. 1.5 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Estimation of Solubility of Gases in Petroleum and Other Organic Liquids

ICS
75.040
CCS
发布
2020-11-01
实施

1.1 This test method covers the use of automated vapor pressure instruments to determine the vapor pressure exerted in vacuum of crude oils. This test method is suitable for testing samples that exert a vapor pressure between 25 kPa and 180 kPa at 37.8 °C at vapor-liquid ratios from 4:1 and 0.02:1 (X = 4 and 0.02). NOTE 1—This test method is suitable for the determination of the vapor pressure of crude oils at temperatures from 0 °C to 100 °C and pressures up to 500 kPa, but the precision and bias statements (see Section 14) may not be applicable. The current precision of the method is limited at vapor-liquid ratios of 0.02 and 4. (Section 14 is inclusive of vapor-liquid ratios of 0.02 and 4). 1.2 This test method also allows the determination of vapor pressure for crude oil samples having pour points above 15 °C provided the proper sample handling, transfer, and analysis procedures are followed. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.2.1 – 7.3.2. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Determination of Vapor Pressure of Crude Oil: VPCRx (Expansion Method)

ICS
75.040
CCS
发布
2020-06-01
实施

Standard Test Method for Determination of Sludging and Corrosion Tendencies of Inhibited Mineral Oils

ICS
75.040
CCS
发布
2020-06-01
实施

1.1 This test method covers the procedures to determine the total mercury content in a sample of crude oil. 1.2 The test method may be applied to crude oil samples containing between 5 ng ⁄mL to 400 ng ⁄mL of mercury. The results may be converted to mass basis, and reported as ng/g of mercury. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This work has been published in “Determination of Mercury in Crude Oil by Atomic Spectroscopy.”2 1.5 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Total Mercury in Crude Oil Using Combustion-Gold Amalgamation and Cold Vapor Atomic Absorption Method

ICS
75.040
CCS
发布
2020-06-01
实施

1.1 This test method covers the procedure for the distillation of stabilized crude petroleum (see Note 1) to a final cut temperature of 400 °C Atmospheric Equivalent Temperature (AET). This test method employs a fractionating column having an efficiency of 14 to 18 theoretical plates operated at a reflux ratio of 5:1. Performance criteria for the necessary equipment is specified. Some typical examples of acceptable apparatus are presented in schematic form. This test method offers a compromise between efficiency and time in order to facilitate the comparison of distillation data between laboratories. NOTE 1—Defined as having a Reid vapor pressure less than 82.7 kPa (12 psi). 1.2 This test method details procedures for the production of a liquefied gas, distillate fractions, and residuum of standardized quality on which analytical data can be obtained, and the determination of yields of the above fractions by both mass and volume. From the preceding information, a graph of temperature versus mass % distilled can be produced. This distillation curve corresponds to a laboratory technique, which is defined at 15/5 (15 theoretical plate column, 5:1 reflux ratio) or TBP (true boiling point). 1.3 This test method can also be applied to any petroleum mixture except liquefied petroleum gases, very light naphthas, and fractions having initial boiling points above 400 °C. 1.4 This test method contains the following annexes and appendixes: 1.4.1 Annex A1—Test Method for the Determination of the Efficiency of a Distillation Column, 1.4.2 Annex A2—Test Method for the Determination of the Dynamic Holdup of a Distillation Column, 1.4.3 Annex A3—Test Method for the Determination of the Heat Loss in a Distillation Column (Static Conditions), 1.4.4 Annex A4—Test Method for the Verification of Temperature Sensor Location, 1.4.5 Annex A5—Test Method for Determination of the Temperature Response Time, 1.4.6 Annex A6—Practice for the Calibration of Sensors, 1.4.7 Annex A7—Test Method for the Verification of Reflux Dividing Valves, 1.4.8 Annex A8—Practice for Conversion of Observed Vapor Temperature to Atmospheric Equivalent Temperature (AET), 1.4.9 Appendix X1—Test Method for Dehydration of a Sample of Wet Crude Oil, and 1.4.10 Appendix X2—Practice for Performance Check. 1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. 1.6 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 10. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. 1 This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee D02.08 on Volatility. Current edition approved June 1, 2020. Published June 2020. Originally approved in 1970. Last previous edition approved in 2019 as D2892 – 19. DOI: 10.1520/D2892-20. *A Summary of Changes section appears at the end of this standard Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. 2. Referenced Documents

Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column)

ICS
75.040
CCS
发布
2020-06-01
实施

1.1 This test method covers the procedure to determine the total mercury content in a sample of crude oil. This test method can be used for total mercury determination in natural and processed liquid and oil products (gasoline, naphtha, etc.). 1.2 This test method may be applied to samples containing between 5.0 ng ⁄mL to 350 ng ⁄mL of mercury. The results may be converted to mass basis. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This work has been published in “Determination of Mercury in Crude Oil by Atomic Spectroscopy.”2 1.5 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Total Mercury in Crude Oil Using Combustion and Direct Cold Vapor Atomic Absorption Method with Zeeman Background Correction

ICS
75.040
CCS
发布
2020-06-01
实施

1.1 These test methods cover the determination of nickel, vanadium, and iron in crude oils and residual fuels by inductively coupled plasma (ICP) atomic emission spectrometry. Two different test methods are presented. 1.2 Test Method A (Sections 7 – 11 and 18 – 22)—ICP is used to analyze a sample dissolved in an organic solvent. This test method uses oil-soluble metals for calibration and does not purport to quantitatively determine or detect insoluble particulates. 1.3 Test Method B (Sections 12 – 22)—ICP is used to analyze a sample that is decomposed with acid. 1.4 The concentration ranges covered by these test methods are determined by the sensitivity of the instruments, the amount of sample taken for analysis, and the dilution volume. A specific statement is given in 15.2. Typically, the low concentration limits are a few tenths of a milligram per kilogram. Precision data are provided for the concentration ranges specified in Section 21. 1.5 The values stated in SI units are to be regarded as standard. 1.5.1 Exception—The values given in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Methods for Determination of Nickel, Vanadium, and Iron in Crude Oils and Residual Fuels by Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry

ICS
75.040
CCS
发布
2020-06-01
实施

1.1 This test method covers the determination of sediment in crude oils by membrane filtration. This test method has been validated for crude oils with sediments up to approximately 0.15 % by mass. 1.2 The accepted unit of measure for this test method is mass %, but an equation to convert to volume % is provided (see Note 6). 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 6.1 and Annex A1. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Sediment in Crude Oil by Membrane Filtration

ICS
75.040
CCS
发布
2020-05-01
实施

1.1 This test method covers the determination of salt in crude oils. For the purpose of this test method, salt is expressed as % (m/m) NaCl (sodium chloride) and covers the range from 0.0005 % to 0.15 % (m/m). 1.2 The limit of detection is 0.0002 % (m/m) for salt (as NaCl). 1.3 The test method is applicable to nearly all of the heavier petroleum products, such as crude oils, residues, and fuel oils. It may also be applied to used turbine oil and marine diesel fuel to estimate seawater contamination. Water extractable salts, originating from additives present in oils, are codetermined. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Salt in Crude Oils (Potentiometric Method)

ICS
75.040
CCS
发布
2020-05-01
实施

Standard Test Method for Determination of Sludging and Corrosion Tendencies of Inhibited Mineral Oils

ICS
75.040
CCS
发布
2020-01-01
实施

Crude oil and petroleum products — Test methods of sulfur content

ICS
75.040
CCS
发布
2019-12-16
实施

Standard Test Method for Determination of Organic Chloride Content in Crude Oil

ICS
75.040
CCS
发布
2019-12-01
实施

Standard Test Method for Density, Relative Density, and API Gravity of Crude Oils by Digital Density Analyzer

ICS
75.040
CCS
发布
2019-12-01
实施

Standard Test Method for Water Separability of Petroleum Oils and Synthetic Fluids

ICS
75.040
CCS
发布
2019-11-01
实施

Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column)

ICS
75.040
CCS
发布
2019-11-01
实施

1.1 This test method covers the quantitative determination of total vanadium and nickel in crude and residual oil in the concentration ranges shown in Table 1 using X-ray fluorescence (XRF) spectrometry. 1.2 Sulfur is measured for analytical purposes only for the compensation of X-ray absorption matrix effects affecting the vanadium and nickel X-rays. For measurement of sulfur by standard test method use Test Methods D4294, D2622 or other suitable standard test method for sulfur in crude and residual oils. 1.3 This test method is limited to the use of X-ray fluorescence (XRF) spectrometers employing an X-ray tube for excitation in conjunction with wavelength dispersive detection system or energy dispersive high resolution semiconductor detector with the ability to separate signals of adjacent and near-adjacent elements. 1.4 This test method uses inter-element correction factors calculated from XRF theory, the fundamental parameters (FP) approach, or best fit regression. 1.5 Samples containing higher concentrations than shown in Table 1 must be diluted to bring the elemental concentration of the diluted material within the scope of this test method. 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6.1 The preferred concentrations units are mg/kg for vanadium and nickel. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry

ICS
75.040
CCS
发布
2019-08-01
实施

Standard Test Method for Determination of Organic Chloride Content in Crude Oil

ICS
75.040
CCS
发布
2019-07-01
实施

1.1 This test method covers the estimation of the mean relative molecular mass of petroleum oils from kinematic viscosity measurements at 100 °F and 210 °F (37.78 °C and 98.89 °C).2 It is applicable to samples with mean relative molecular masses in the range from 250 to 700 and is intended for use with average petroleum fractions. It should not be applied indiscriminately to oils that represent extremes of composition or possess an exceptionally narrow mean relative molecular mass range. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Estimation of Mean Relative Molecular Mass of Petroleum Oils from Viscosity Measurements

ICS
75.040
CCS
发布
2019-05-01
实施



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号